Skip to main content
Log in

Immobilization of commercial acid phosphatases from wheat germ and potato onto ion exchangers

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A very simple and fast immobilization technique based on ion exchange was investigated to improve the thermal stability of acid phosphatase from wheat germ and potato. Immobilization was not efficient for the DEAE-sepharose, and MANAE-agarose supports. On the other hand, Toyopearl DEAE-650s proved to be a promising support, with immobilization yield above 95% and recovery of activity above 85% for both enzymes. A second step was introduced in the immobilization protocol to improve the thermal stability of these biocatalysts. For this, oxidation and reduction of glycosidic chains of acid phosphatase were carried out, allowing the formation of aldehyde groups and subsequent interaction with the amine groups to further stabilize the different forms (free and immobilized). Both biocatalysts showed residual activity after 1 hour of inactivation at the temperature of 60 °C, a fact not observed for the free enzyme. The wheat germ acid phosphatase derivative was the most stable, with residual activity of 66.7% for the only immobilized derivative and 76.2% for the oxidized/reduced derivative. Also, the derivatives prepared by ion exchange adsorption on Toyopearl (TOYO), followed by oxidation/reduction and intramolecular crosslinking, were approximately 15 and 41 times more stable than the free enzyme from wheat germ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material Not applicable

References

  1. A. Anand and P. K. Srivastava, Appl. Biochem. Biotechnol, 167, 8 (2012).

    Google Scholar 

  2. B. C. Behera, S. K. Singdevsachan, R. R. Mishra, S. K. Dutta and H. N. Thatoi, Biocatal Agric. Biotechnol, 3, 97 (2014).

    Article  Google Scholar 

  3. C. K. Tagad and S. G. Sabharwal, J. Food Sci. Technol, 55 (2018).

  4. A. A. Souza, V. O. Leitão, M. H. Ramada, A. Mehdad, R. C. Georg, C. J. Ulhôa and S. M. Freitas, PLoS ONE, 11, 3 (2016).

    Google Scholar 

  5. L. Zhao, Q. Liu, Y.-Q. Zhang, Q.-Y Cui and Y.-C. Liang, J. Integr. Agric, 16, 6 (2017).

    Google Scholar 

  6. S. M. G. Duff, G. Sarath and W. C. Plaxton, Physiol Plant, 90 (1994).

  7. P.A. Granjeiro, A.D.M. Cavagis, L.C. Leite, C.V. Ferreira, J.M. Granjeiro and H. Aoyama, Mol. Cell Biochem., 266 (2004).

  8. L. Gianfreda and M. A. Rao, Enzyme Microbial Tech, 35, 4 (2004).

    Article  Google Scholar 

  9. C. F. Hoehamer, C. S. Mazur and N. L. Wolfe, J. Agric. Food Chem., 53, 1 (2005).

    Article  Google Scholar 

  10. S. Muniyan, N. K. Chaturvedi, J. G. Dwyer, C. A. Lagrange, W. G. Chaney and M. F. Lin, Int. J. Mol. Sci, 14 (2013).

  11. I.B. Quintero, A. M. Herrala, C. L. Araújo, A. E. Pulkka, S. Hautaniemi, K. Ovaska, E. Pryazhnikov, E. Kulesskiy, M. K. Ruuth, Y. Soini, R. T. Sormunen, L. Khirug and P. T. Vihko, PLoS One, 8, 9 (2013).

    Article  Google Scholar 

  12. S. Sebastian, S. P. Touchburb, E. R. Chavez and P. C. Lague, Poult. Sci, 75 (1996).

  13. M.R.A. Azeem, A.N. Chaudhary, R. Hayat, Q. Hussain, M. I. Tahir and M. Imran, Arch. Agron. Soil Sci., 6 (2014).

  14. L. M. Pinotti, P. W. Tardioli, C.S. Farinas, G. Fernández-Lorente, A. H. Orrego, J. M. Guisan and B. C. Pessela, Appl. Biochem. Biotechnol., 192 (2020).

  15. R. A. Sheldon and S. Van-Pelt, Chem. Soc. Rev, 42 (2013).

  16. D. Brady and J. Jordaan, Biotech. Lett, 31 (2009).

  17. A. Liese and L. Hilterhaus, Chem. Soc. Rev, 42 (2013).

  18. U. Guzik, K. Hupert-Kocurek and D. Wojcieszunska, Molecules, 19, 17 (2014).

    Article  Google Scholar 

  19. T. Kawai, K. Saito and W. Lee, J. Chromatog. B. Anal. Technol. Biomed Life Sci, 790 (2003).

  20. P. R. Levison, Chromatogr. Performance Adv. Synth. Catal, 349 (2007).

  21. R. A. Sheldon, Synth. Catal., 349 (2007).

  22. B. Krajewska Enzyme Microb. Technol., 35 (2004).

  23. X. D. Tong X. Y Dong and Y. Sun, Biochem., Eng. J, 12 (2002).

  24. A. Lyddiatt, Curr. Opin. Biotechnol., 13 (2002).

  25. T. L. Albuquerque, S. Pierce, N. Rueda, A. Marzochella, L. R. B. Gonçalves, M. V. P. Rocha and R. Fernadez-Lafuente, Process Biochem, 51, 7 (2016).

    Google Scholar 

  26. V. O. Leitão, R. C. M. Lima, M. H. Vainstein and C. J. Ulhoa, Biotechnol. Lett., 32, 8 (2010).

    Article  Google Scholar 

  27. B. N. Ames, Meth. Enzymol., 8 (1966).

  28. R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. M. Fernández-Lorente and J. M. Guisan, Chem. Phys. Lipids, 93 (1998).

  29. J. M. Guisan, Enzym. Microb. Technol, 10 (1988).

  30. L. Trobo-Maseda, A. H. Orrego, J. M. Guisan and J. Rocha-Martin, Int. J. Biol. Macromol, 157 (2020).

  31. T. Kalita and P. K. Ambasht, J. Protein Proteomics, 10 (2019).

  32. G. Fernandez-Lorente, Z. Cabrera, C. Godoy, R. Fernandez-Lafuente, J. M. Palomo and J. M. Guisan, Process Biochem., 43 (2008).

  33. P. K. Srivastava and A. Anand, Int. J. Biol. Macromol, 64 (2014).

  34. J. Zhu, Q. Huang, M. Pigna and A. Violante, Colloid Surf. B, 77 (2010).

  35. K.R.C. Reddy and A.M. Kayastha, J. Mol. Catal. B Enzym., 38 (2006).

Download references

Acknowledgements

The authors acknowledge the FEQUI/UFU, CNPq, FAPEMIG (Process: APQ - 00874-18) and CAPES (Brazil) for financial support and also acknowledge the ICP - CSIC institute (Spain) for allowing to this work to be carried out.

Funding

Funding The funds are described in the acknowledgments

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions - Not applicable

Corresponding author

Correspondence to Miriam Maria de Resende.

Ethics declarations

Conflicts of interest/Competing interests The authors declare no conflict of interest

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Additional information

Code availability Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.A., Martins, P.A., de Morais, W.G. et al. Immobilization of commercial acid phosphatases from wheat germ and potato onto ion exchangers. Korean J. Chem. Eng. 40, 2263–2270 (2023). https://doi.org/10.1007/s11814-023-1458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1458-3

Keywords

Navigation