Skip to main content
Log in

Rhodamine B dye degradation by fabricated Ti/RuO2 anode: Optimization by RSM, reaction mechanism, study of sludge

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Textile wastewater was treated by an electrochemical process using Ti/RuO2 as anode and stainless steel as a cathode. Textile wastewater contains harmful dyes that can be broken down into simpler products like CO2 and H2O using the electro-oxidation process. For this process, a dimensional stable anode (Ti/RuO2) was fabricated using sol-gel method. Apreo field emission scanning electron microscopy (FE-SEM) with energy dispersed x-ray (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD) has been done to study their characteristics. Design expert software was used to optimize the parameters using response surface methodology. Response parameters such as pH (2–10), current (0.5–2 A), initial concentration (50–200 mg/L), and time (2–15 min) were varied, and 30 sets of experiments were designed. The optimized value obtained for maximizing the dye degradation percentage and COD removal percentage is at initial pH of 3.3, current of 0.5 A, initial concentration of 50 mg/L, and time of 9.4 min for dye degradation of 99.82%, COD removal of 82.50% removal, and 1.81 kWh/m3 energy consumption (minimum) keeping 0.2 M NaCl electrolyte as constant. Kinetic study shows that the reaction is first order. The mechanism of the process was also studied using UPLC-QTOF. The total cost of the process was found to be ₹582.79 or $7.68. Characterization of the sludge was also done to check its reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019).

    Article  CAS  Google Scholar 

  2. T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng and X. Yan, ACS Sust. Chem. Eng., 12, 3 (2015).

    Google Scholar 

  3. J. Ma, M. Zhang, M. Ji, L. Zhang, Z. Qin, Y. Zhang, L. Gao and T. Jiao, Int. J. Biol. Macromol., 193, 2221 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. J. Yin, F. Zhan, T. Jiao, H. Deng, G. Zou, Z. Bai, Q. Zhang and Q. Peng, Chin. Chem. Lett., 31, 4 (2020).

    Article  Google Scholar 

  5. A. G. Vlyssides, D. Papaioannou, M. Loizidoy, P. K. Karlis and A. A. Zorpas, Waste Manage., 20, 7 (2000).

    Article  Google Scholar 

  6. J. Iniesta, E. Exposito, J. Gonzalez-Garcıa, V. Montiel and A. Aldaz, J. Electrochem. Soc., 149, 5 (2002).

    Article  Google Scholar 

  7. C. Barrera-Diaz, G. Roa-Morales, L. Avila-Cordoba, T. Pavon-Silva and B. Bilyeu, Ind. Eng. Chem. Res., 45, 34 (2006).

    Article  CAS  Google Scholar 

  8. C. R. Costa, C. M. R. Botta, E. L. G. Espindola and P. Olivi, J. Hazard. Mater., 153, 616 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. D. Xu, Y. Li, L. Yin, Y. Ji, J. Niu and Y. Yu, Front. Environ. Sci. Eng., 12, 1 (2018).

    Google Scholar 

  10. L. Zhang, K. Wei, J. Ma, J. Wang, Z. Liu, R. Xing and T. Jiao, Appl. Surf. Sci., 566, 150754 (2021).

    Article  CAS  Google Scholar 

  11. S. Zhu, L. Fan and Y. Lu, RSC Adv., 7, 59939 (2017).

    Google Scholar 

  12. C. K. Caraújo, G. R. Oliveira, N. S. Fernandes, C. L. P. S. Zanta, S. S. L. Castro, D. R. da Silva and C. A. Martínez-Huitle, Environ. Sci. Pollut. Res., 21, 16 (2014).

    Google Scholar 

  13. N. Jiang, Q. Zhao, Y. Xue, W. Xu and Z. Ye, J. Clean. Prod., 188, 732 (2018).

    Article  CAS  Google Scholar 

  14. A. M. S. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 29, 2 (1999).

    Article  Google Scholar 

  15. L. Zhang, L. Xu, J. He and J. Zhang, Electrochim. Acta, 117, 192 (2014).

    Article  CAS  Google Scholar 

  16. M. Ghazouani, L. Bousselmi and H. Akrout, J. Environ. Chem. Eng., 8, 104509 (2020).

    Article  CAS  Google Scholar 

  17. A. J. Terezo and E. CPereira, Mater. Lett., 53, 339 (2002).

    Article  CAS  Google Scholar 

  18. A. Majedi, A. Abbasi and F. Davar, J. Sol Gel Sci. Technol., 77, 543 (2016).

    Article  Google Scholar 

  19. S. Varala, V. Ravisankar, M. Al-Ali, M. I. Pownceby, R. Parthasarathy and S. K. Bhargava, Chemosphere, 237, 124488 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. K. Y. Nandiwale and V. V. Bokade, Ind. Eng. Chem. Res., 53, 18690 (2014).

    Article  CAS  Google Scholar 

  21. E. Raissi and R. E. Farsani, World Acad. Sci., Eng. Technol., 39, 280 (2009).

    Google Scholar 

  22. K. Y. Nandiwale, A. M. Pande and V. V. Bokade, RSC Adv., 5, 22 (2015).

    Google Scholar 

  23. M. Abdulgader, Q. JimmyYu, A. A. Zinatizadeh, P. Williams and Z. Rahimi, J. Environ. Chem. Eng., 8, 3 (2020).

    Article  Google Scholar 

  24. K. Wang, Y. Mao, C. Wang, Q. Ke and M. Zhao, Environ. Sci. Pollut. Res., 29, 36075 (2022).

    Article  CAS  Google Scholar 

  25. M. Menon and N. Pryds, Adv. Energy Mater., 205, 5 (2008).

    Google Scholar 

  26. F. A. Rodríguez, E. P. Rivero and I. González, MethodsX, 5, 1613 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. R. F. Yunus, Y. Zheng, K. G. N. Nanayakkara and J. P. Chen, Ind. Eng. Chem. Res., 48, 16 (2009).

    Google Scholar 

  28. I. S. AL-Jobouri, S. A. Dhahir and K. A. AL-Saade, Am. J. Environ. Sci., 9, 3 (2013).

    Article  Google Scholar 

  29. R. W. Ricci, M. A. Ditzler Robert and L. P. Nestor, J. Chem. Educ., 71, 983 (1994).

    Article  CAS  Google Scholar 

  30. A. Goyal, V. C. Srivastava and J. P. Kushwaha, Chem. Eng. J., 325, 289 (2017).

    Article  CAS  Google Scholar 

  31. R. Chauhan, V. C. Srivastava and A. D. Hiwarkar, J. Taiwan Inst. Chem. Eng., 69, 106 (2016).

    Article  CAS  Google Scholar 

  32. R. Chauhan and V. C. Srivastava, Chem. Eng. J., 386, 3 (2020).

    Article  Google Scholar 

  33. H. Ajab, M. Hasnain and A. Yaqub, Sust. Mater. Technol., 26, e00225 (2020).

    CAS  Google Scholar 

  34. R. G. Freitas, L. F. Marchesi, R. T. S. Oliveira, F. I. Mattos-Costa, E. C. Pereira, L. O. S. Bulhões and M. C. Santos, J. Power Sources, 171, 2 (2007).

    Google Scholar 

  35. E. Palma-Goyes, J. Vazquez-Arenas, C. Ostos, F. Ferraro, R. A. Torres-Palma and I. Gonzalez, Electrochim. Acta, 213, 740 (2016).

    Article  CAS  Google Scholar 

  36. R. Dixit and C. B. Majumder, J. CO2 Util., 26, 80 (2018).

    Article  CAS  Google Scholar 

  37. K. Rokosz, T. Hryniewicz and S. Raaen, Tehnicki Vjesnik, 22, 1 (2015).

    Article  Google Scholar 

  38. E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. L. Stephens and I. Chorkendorff, Chem. Sci., 6, 190 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. I. M. D. Gonzaga, A. R. Dória, V. M. Vasconcelos, F. M. Souza, M. C. dos Santos, P. Hammer, M. A. Rodrigo, K. I. B. Eguiluz and G. R. Salazar-Banda, J. Electroanal. Chem., 874, 114460 (2020).

    Article  CAS  Google Scholar 

  40. S. J. Han, J. H. Song, J. Yoo, S. Park, K. H. Kang and I. K. Song, Int. J. Hydrogen Energy, 42, 5886 (2017).

    Article  CAS  Google Scholar 

  41. J. J. Pietron, M. B. Pomfret, C. N. Chervin, J. W. Long and D. R. Rolison, J. Mater. Chem., 22, 5197 (2012).

    Article  CAS  Google Scholar 

  42. J. Zhou, T. Wang, C. Cheng, F. Pan, Y. Zhu, H. Ma and J. Niu, Nanoscale, 14, 3579 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. A. Kumar and B. Prasad, Sep. Purif. Technol., 279, 119677 (2021).

    Article  CAS  Google Scholar 

  44. J. Zhou, T. Wang, C. Cheng, F. Pan, Y. Zhu, H. Ma and J. Niu, Nanoscale, 14, 9 (2022).

    Google Scholar 

  45. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah and M. Mehranian, J. Hazard. Mater., 123, 18795 (2005).

    Article  Google Scholar 

  46. P. A. J. Rosa, A. M. Azevedo and M. R. Aires-Barros, J. Chromatogr. A, 1141, 1 (2007).

    Article  Google Scholar 

  47. Y. Hang, M. Qu and S. Ukkusuri, Energy Build., 43, 4 (2011).

    Article  Google Scholar 

  48. R. Ghelich, M. R. Jahannama, H. Abdizadeh, F. S. Torknik and M. R. Vaezi, Compos. Part B: Eng., 166, 527 (2019).

    Article  CAS  Google Scholar 

  49. M. Kumari and S. K. Gupta, Sci. Rep., 9 (2019).

  50. D. S. Ken and A. Sinha, J. Environ. Chem. Eng., 9, 1 (2021).

    Article  Google Scholar 

  51. G. Villafane V. Bazán, E. Brandalez, A. López, P. Pacheco and A. Maratta, Talanta Open, 6, 100149 (2022).

    Article  Google Scholar 

  52. M. Tripathi, A. Bhatnagar, N. M. Mubarak, J. N. Sahu and P. Ganesan, Fuel, 277, 118184 (2020).

    Article  CAS  Google Scholar 

  53. R. E. Palma-Goyes, F. L. Guzmán-Duque, G. Peñuela, I. González J. L. Nava and R. A. Torres-Palma, Chemosphere, 81, 1 (2010).

    Article  Google Scholar 

  54. H. Ma, B. Wang and X. Luo, J. Hazard. Mater., 149, 2 (2007).

    Article  Google Scholar 

  55. E. Chatzisymeon, N. P. Xekoukoulotakis, A. Coz, N. Kalogerakis and D. Mantzavinos, J. Hazard. Mater., 137, 2 (2006).

    Article  Google Scholar 

  56. D. Ozturk, E. Dagdas, B. Ali Fil and M. J. K. Bashir, Environ. Technol. Innov., 21, 101264 (2021).

    Article  CAS  Google Scholar 

  57. A. Sánchez-Sánchez, M. Tejocote-Pérez, R. M. Fuentes-Rivas, I. Linares-Hernández, V. Martínez-Miranda and R. M. G. Fonseca-Montes de Oca, Int. J. Photoenergy, 2018 (2018).

  58. S. Singh, V. Kumar, N. Upadhyay and J. Singh, J. Environ. Chem. Eng., 4, 3 (2016).

    Google Scholar 

  59. B. K. Körbahti, K. Artut, C. Geçgel and A. Özer, Chem. Eng. J., 173, 3 (2011).

    Article  Google Scholar 

  60. H. Khan, F. Wahab, S. Hussain, S. Khan and M. Rashid, Chemosphere, 291, 132818 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. L. Feng, J. Liu, Z. Guo, T. Pan, J. Wu, X. Li, B. Liu and H. Zheng, Sep. Purif. Technol., 285, 120314 (2022).

    Article  CAS  Google Scholar 

  62. H. S. Awad and N. A. Galwa, Chemosphere, 61, 9 (2005).

    Article  Google Scholar 

  63. R. Kaur, J. P. Kushwaha and N. Singh, Sci. Total Environ., 677, 4 (2019).

    Article  Google Scholar 

  64. A. A. Elbatea, A. Nosier, A. A. Zatout, I. Hassan, G. H. Sedahmed, M. H. Abdel-Aziz and M. A. El-Naggar, J. Water Process Eng., 41, 102042 (2021).

    Article  Google Scholar 

  65. P. Asaithambi, M. B. Yesuf, R. Govindarajan, N. M. Hariharan, P. Thangavelu and E. Alemayehu, Sep. Purif. Technol., 233, 115935 (2019).

    Article  Google Scholar 

  66. F. Ghanbari and M. Mahsa, J. Environ. Chem. Eng., 3, 1 (2015).

    Article  Google Scholar 

  67. R. Patidar and V. C. Srivastava, Chem. Eng. J., 403, 125736 (2020).

    Article  Google Scholar 

  68. A. E. Kuleyin, A. Gok and F. Akbal, J. Environ. Chem. Eng., 9, 104782 (2021).

    Article  CAS  Google Scholar 

  69. S. Hussain, H. Khan, N. Khan, S. Gul, F. Wahab, K. I. Khan, S. Zeb, S. Khan, A. Baddouh, S. Mehdi, A. F. Maldonado and M. Campos, Environ. Technol. Innov., 22, 101509 (2021).

    Article  CAS  Google Scholar 

  70. R. G. Rice, J. Int. Ozone Assoc., 21, 2 (2008).

    Google Scholar 

  71. K. E. O’Shea and D. D. Dionysiou, Phys. Chem. Lett., 3, 15 (2012).

    Google Scholar 

  72. M. P. D. Silva, A. C. A. Souza, L. E. Lima Ferreira, L. M. P. Neto, B. F. Nascimento, C. M. B. Araújo, T. J. M. Fraga, M. A. M. Sobrinho and M. G. Ghislandi, Environ. Adv., 4, 100064 (2021).

    Article  Google Scholar 

  73. T. J. M. Fraga, M. P. Silva, E. M. P. L. Freire, L. C. Almeida, M. A. M. Sobrinho, M. G. Ghislandi and M. N. Carvalho, Chem. Eng. Res. Des., 180, 109 (2022).

    Article  CAS  Google Scholar 

  74. L. M. S. Farias, M. G. Ghislandi, M. F. de Aguia, D. B. R. S. Silva, A. N. R. Leal, F. A. O. Silva, T. J. M. Fraga, C. P. de Melo and K. G. B. Alves, Mater. Chem. Phys., 276, 125356 (2022).

    Article  Google Scholar 

  75. M. P. D. Silva, M. Z. S. B. Souza, J. V. F. L. Cavalcanti, T. J. M. Fraga, M. A. M. Sobrinho and M. G. Ghislandi, Environ. Sci. Pollut. Res., 28, 23648 (2021).

    Google Scholar 

  76. B. Sari, H. Güney, S. Türkeş and O. Keskinkan, J. Int. Ozone Assoc., 1 (2022).

  77. R. Chauhan and V. C. Srivastava, Ind. Eng. Chem. Res., 60, 15 (2021).

    Article  Google Scholar 

  78. R. Chauhan and V. C. Srivastava, Process Saf. Environ. Protect., 147, 245 (2021).

    Article  CAS  Google Scholar 

  79. R. Patidar and V. C. Srivastava, Chem. Eng. J., 403, 125736 (2020).

    Article  Google Scholar 

  80. N. N. Drouiche, N. Ghaffourb, H. Lounicic, N. Mameric, A. Maallemia and H. Mahmoudid, Desalination, 223, 1 (2008).

    Article  Google Scholar 

  81. N. Kishimoto, T. Kitamura, M. Kato and H. Otsu, Water Res., 47, 5 (2013).

    Article  Google Scholar 

  82. N. Mohan, N. Balasubramanian and C. A. Basha, J. Hazard. Mater., 147, 1 (2007).

    Article  Google Scholar 

  83. H. Afanga, H. Zazou, F. E. Titchou, Y. Rakhila, R. Ait Akbour, A. Elmchaouri, J. Ghanbaja and M. Hamdani, Sust. Environ. Res., 30, 1 (2020).

    Article  Google Scholar 

  84. A. S. Fajardo, H. F. Seca, R. C. Martins, V. N. Corceiro, I. F. Freitas, M. E. Quinta-Ferreira and R. M. Quinta-Ferreira, J. Electroanal. Chem., 785, 180 (2017).

    Article  CAS  Google Scholar 

  85. L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xue and X. Meng, RSC Adv., 10, 28509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Q. Dai, L. Jiang and X. Luo, Int. J. Electrochem. Sci., 12, 4265 (2017).

    Article  CAS  Google Scholar 

  87. H. Zhong, C. Sun, S. Yang, Y. Ding, H. He and Z. Wang, J. Hazard. Mater., 162, 1477 (2009).

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishir Sinha.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranga, M., Sinha, S. & Biswas, P. Rhodamine B dye degradation by fabricated Ti/RuO2 anode: Optimization by RSM, reaction mechanism, study of sludge. Korean J. Chem. Eng. 40, 2219–2238 (2023). https://doi.org/10.1007/s11814-022-1355-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1355-1

Keywords

Navigation