Skip to main content
Log in

Electrochemical study for simultaneous detection of procaine hydrochloride and its metabolite in biological samples using a nanostructured strong sensor

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Procaine belongs to a type of medicine that excessive dosage creates cardiac arrest and also several allergenic reactions. Thus, continuous monitoring of the drug and its metabolite is necessary for sustainable health management during treatment. The innovative aspect of nanostructure materials has great importance in the advancement of research on modified sensors. In the present study, the electrocatalytic performance of multi-walled carbon nanotubes modified carbon paste electrode was investigated for the simultaneous analysis of procaine hydrochloride and p-aminobenzoic acid with high accuracy and sensitivity. The nanostructured sensor is characterized by microscopic and electrochemical techniques, such as scanning electron microscopy and electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− as the redox probes. The modified sensor shows an improved voltammetric peak current than the unmodified carbon paste electrode. The electrochemical behavior of the modified sensor was studied by cyclic voltammetry and differential pulse voltammetry. The sensor kinetic parameters containing electron transfer rate constant (ks=0.47 s−1) and charge transfer coefficient (α=0.23) were calculated using cyclic voltammetry. The differential pulse voltammetry technique was also investigated in terms of linearity, lower limit of detection, lower limit of quantitation, accuracy and precision, which indicate acceptable results. Under optimized experimental conditions, the concentration linear range for procaine and PABA was obtained in the range of 2.4 to 100.0 µM. The limit of detection values (S/N=3) were calculated to be 62.0 and 49.0 nM for detection of procaine and p-aminobenzoic acid, respectively. Also, the effects of interfering materials, repeatability and stability of the modified sensor were studied. Finally, the proposed sensor was applied for simultaneous and sensitive detection of p-aminobenzoic acid and procaine in real media such as plasma and pharmaceutical products with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  1. J. A. Giovannitti, M. B. Rosenberg and J. C. Phero, Oral Maxillofac. Surg. Clin. North Am., 25, 453 (2013).

    Article  PubMed  Google Scholar 

  2. B. M. Razavi and B. S. Fazly Bazzaz, Eur. J. Clin. Microbiol. Infect. Dis., 38, 991 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. H. C. Hemmings and T. D. Egan, Pharmacology and physiology for anesthesia, Elsevier Health Sciences (2012).

  4. J. D. Hahn-Godeffroy, Schweiz Z Ganzheitsmed, 23, 291 (2011).

    Article  Google Scholar 

  5. J. D. Dolgado and W. A Remers, Wilson and Grisvold’s textbook of organic medicinal and pharmaceutical chemistry, Lippincott Company JB, New York (1991).

    Google Scholar 

  6. M. Mirzaei, M. Khayat and A. Saeidi, Sci. Iran, 19, 561 (2012).

    Article  CAS  Google Scholar 

  7. A. A. Shaw, L. A. Wainschel and M. D. Shetlar, Photochem. Photobiol., 55, 647 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. M. Haroon, I. Abdulazeez, T. A. Saleh and A. A. Al-Saadi, Electrochim. Acta, 387, 138463 (2021).

    Article  CAS  Google Scholar 

  9. M. Wei, Y. Zhou, J. Zhi, D. Fu, Y. Einaga, A. Fujishima, X. Wang and Z. Gu, Electroanalysis, 20, 137 (2008).

    Article  CAS  Google Scholar 

  10. M. R. Dhananjeyan, J. A. Trendel, C. Bykowski, J. G. Sarver, H. Ando and P. W. Erhardt, J. Chromatogr. B, 867, 247 (2008).

    Article  CAS  Google Scholar 

  11. M. R. Dhananjeyan, C. Bykowski, J. A. Trendel, J. G. Sarver, H. Ando and P. W. Erhardt, J. Chromatogr. B, 847, 224 (2007).

    Article  CAS  Google Scholar 

  12. I. Badea, D. Moja and L. Vladescu, Anal. Bioanal. Chem., 374, 51 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. P. C. Damiani, I. Durán-Merás, A. García-Reiriz, A. Jiménez-Girón, A. Muñoz de la Peña and A. C. Olivieri, Anal. Chem., 79, 6949 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. L. Assi, A. Alsalman, D. Bianco, P. Ziehl, J. El-Khatib, M. Bayat and F. H. Hussein, J. Build. Eng., 43, 102512 (2021).

    Article  Google Scholar 

  15. S. M. Ghoreishi, M. Behpour, A. Khoobi and Z. Moghadam, Anal. Lett., 46, 323 (2013).

    Article  Google Scholar 

  16. M. S. Rostami, M. M. Khodaei and S. Rostami, J. Organomet. Chem., 957, 122170 (2022).

    Article  CAS  Google Scholar 

  17. M. Goodarzi, S. Esfandeh and D. Toghraie, J. Mol. Liq., 6, 118264 (2021).

    Google Scholar 

  18. M. Valian, A. Khoobi and M. Salavati-Niasari, Talanta, 247, 123593 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Y. H. Pai, H. F. Huang, Y. C. Chang, C. C. Chou and F. S. Shieu, J. Power. Sources, 159, 878 (2006).

    Article  CAS  Google Scholar 

  20. D. E. Bayraktepe and Z. Yazan, Electroanalysis, 32, 1263 (2020).

    Article  Google Scholar 

  21. S. M. Siddeeg, N. S. Alsaiari, M. A. Tahoon and F. B. Rebah, Int. J. Electrochem. Sci., 15, 3327 (2020).

    Article  CAS  Google Scholar 

  22. M. Enhessari, A. Salehabadi, A. Khoobi and R. Amiri, Mater. Sci. Pol., 35, 368 (2017).

    Article  CAS  Google Scholar 

  23. A. Farokhi-Fard, B. Golichenari, M. M. Ghanbarlou, S. Zanganeh and F. Vaziri, Biosens. Bioelectron., 146, 111731 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. K. Atacana and M. Özacar, Mater. Chem. Phys., 266, 124527 (2021).

    Article  Google Scholar 

  25. K. Atacan, J. Alloys Compd., 791, 391 (2019).

    Article  CAS  Google Scholar 

  26. K. Atacan, N. Güy and M. Özacar, Korean J. Chem. Eng., 39, 2172 (2022).

    Article  CAS  Google Scholar 

  27. F. Altaf, M. B. K. Niazi, Z. Jahan, T. Ahmad, M. A. Akram, A. Saf-dar, M. S. Butt, T. Noor and F. Sher, J. Polym. Environ., 29, 156 (2021).

    Article  CAS  Google Scholar 

  28. S. M. Ghoreishi, A. Khoobi, M. Behpour and S. Masoum, Electrochim. Acta, 130, 271 (2014).

    Article  CAS  Google Scholar 

  29. E. Laviron, J. Electroanal. Chem., 101, 19 (1979).

    Article  CAS  Google Scholar 

  30. N. Demir, K. Atacan, M. Ozmen and S. Z. Bas, New J. Chem., 44, 11759 (2020).

    Article  CAS  Google Scholar 

  31. A. J. Dhulkefl, K. Atacan, S. Z. Bas and M. Ozmen, Anal. Methods, 12, 499 (2020).

    Article  Google Scholar 

  32. N. K. Al-Shara, F. Sher, A. Yaqooba and G. Z. Chen, Int. J. Hydrog. Energy, 44, 27224 (2019).

    Article  CAS  Google Scholar 

  33. N. K. Al-Shara, F. Sher, S. Z. Iqbal, Z. Sajid and G. Z. Chen, J. Energy Chem., 49, 33 (2020).

    Article  Google Scholar 

  34. O. Al-Juboori, F. Sher, A. Hazafa, M. K. Khan and G. Z. Chen, J. CO2 Util., 40, 101193 (2020).

    Article  CAS  Google Scholar 

  35. O. Al-Juboori, F. Sher, U. Khalid, M. B. K. Niazi and G. Z. Chen, ACS Sustainable Chem. Eng., 8, 2877 (2020).

    Google Scholar 

  36. L. Zhou and H. Y. Sohn, AIChE J., 42, 3102 (1996).

    Article  CAS  Google Scholar 

  37. W. J. Kim, C. H. Choi and S. H. Moon, Korean J. Chem. Eng., 19, 617 (2002).

    Article  CAS  Google Scholar 

  38. C.-J. Kim and G. Seo, Korean Chem. Eng. Res., 42, 532 (2004).

    CAS  Google Scholar 

  39. N. Wakao and S. Kaguei, Heat and mass transfer in packed beds, Gordon and Breach Sci. Publications, New York (1982).

    Google Scholar 

  40. R. G. Kander and M. E. Paulaitis, in Chemical engineering at supercritical fluid conditions, M. E. Paulaitis, J. M. L. Penninger, R. D. GrayJr. and P. Davidson Eds., Ann Arbor Science, Ann Arbor (1983).

    Google Scholar 

  41. R. W. Neuzil and J. W. Priegnitz, US Patent, 4,024,331 (1977).

  42. H. Pasekov and M. Polášek, Talanta, 52, 67 (2000).

    Article  Google Scholar 

  43. M. Wei, Y. Zhou, J. Zhi, D. Fu, Y. Einaga, A. Fujishima, X. Wang and Z. Gu, Electroanalysis, 20, 137 (2008).

    Article  CAS  Google Scholar 

  44. W. Wei Qin, Z. Jiao, M. Kang Zhong, X. Jin Shi, J. Zhang, Z. Dong Li and X. Yan Cui, J. Chromatogr. B, 878, 1185 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Farzaneh Haghighian: methodology, software, investigation, formal analysis. Sayed Mehdi Ghoreishi: conceptualization, supervision, project administration, data curation, resources, validation. Abdolmohammad Attaran: conceptualization, supervision, project administration, data curation, resources, validation. Fahimeh Zeraatkar Kashani: formal analysis, software, writing-review and editing. Asma Khoobi: methodology, visualization, formal analysis, investigation, conceptualization. All authors analyzed and interpreted the results.

Corresponding author

Correspondence to Sayed Mehdi Ghoreishi.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighian, F., Ghoreishi, S.M., Attaran, A. et al. Electrochemical study for simultaneous detection of procaine hydrochloride and its metabolite in biological samples using a nanostructured strong sensor. Korean J. Chem. Eng. 40, 650–656 (2023). https://doi.org/10.1007/s11814-022-1290-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1290-1

Keywords

Navigation