Skip to main content
Log in

Indicator of percolation transition in graphite oxide suspension containing cations

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The percolation transition behavior occurs in the solid-liquid separation of graphite oxide (GO), which changes the system from suspension to colloid state and terminates the separation process. An indicator of percolation transition is necessary to help control the status of GO suspension to finish the solid-liquid separation process. The swell ratio, macroscopic appearance TEM, and rheological behavior of GO suspension were tested before and after the percolation transition occurred in a specific interval of K+ concentration. Then, the physical properties of 1.00 g/L GO suspension containing 0.40–0.80 g/L K+, including conductivity, thermal conductivity, viscosity, surface tension, and absorbance were characterized. The values of these physical properties showed a sharp change in the specific interval of K+ concentration. We calculated the first and second slope of two adjacent points of each physical property to obtain a proper percolation transition indicator. The conductivity with the second slope up to 500% was the most significant change among these physical parameters, which can be used as an indicator of percolation transition in GO suspension. To verify the availability of the indicator, we explored the percolation transition behavior of Ca2+ and Al3+ in GO suspension and K+ with different GO solid content, found that the conductivity is still the most significant percolation transition indicator. The indicator obtained in this paper is reliable under varying content of GO and types of cations in suspension, which can be used to determine the percolation transition threshold during the solid-liquid separation of GO suspension containing cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

absorbance of GO suspension

τ :

viscosity of GO suspension [mPa·s−1]

σ :

conductive of GO suspension [mS·cm−1]

ε :

surface tension of GO suspension [mN·m]

λ :

thermal conductive of GO suspension [W·(m·K)−1]

References

  1. A. Dimiev, D. V. Kosynkin, L.B. Alemany, P. Chaguine and J. M. Tour, J. Am. Chem. Soc, 134, 2815 (2012).

    Article  CAS  Google Scholar 

  2. W Du, H. Wu, H. Chen, G. Xu and C. Li, Carbon, 158, 568 (2020).

    Article  CAS  Google Scholar 

  3. C. Li, Y. Shi, X. Chen, D. He, L. Shen and N. Bao, Chem. Eng. Sci., 176, 319 (2018).

    Article  CAS  Google Scholar 

  4. Y. Matsuo, Carbon (New York), 78, 633 (2014).

    CAS  Google Scholar 

  5. W Tan, Y. Liu, L. Liu, R. Xing and G. Zhu, Korean J. Chem. Eng., 33, 3251 (2016).

    Article  CAS  Google Scholar 

  6. M. Bayati and M. F. de Cortalezzi, J. Environ. Eng,., 145, 04019050 (2019).

    Article  CAS  Google Scholar 

  7. H. E. Stanley, J. S. Andrade, S. Havlin, H. A. Makse and B. Suki, Physica A, 266, 5 (1999).

    Article  Google Scholar 

  8. F. Lux, J. Mater. Sci., 28, 285 (1993).

    Article  CAS  Google Scholar 

  9. P. G. Righetti, J. Chromatogr. A, 1037, 491 (2004).

    Article  CAS  Google Scholar 

  10. H. Chen, Y. Ding, Y. He and C. Tan, Chem. Phys. Lett, 444, 333 (2007).

    Article  CAS  Google Scholar 

  11. I. L. Dubnikova, S. M. Berezina and A. V. Antonov, J. Appl. Polym. Sci., 85, 1911 (2002).

    Article  CAS  Google Scholar 

  12. J. Mueller-Deile, R. Lichtinghagen, H. Haller and R. Schmitt, Blood Purificat, 37, 113 (2014).

    Article  CAS  Google Scholar 

  13. M. Galli, S. Sáringer, I. Szilágyi and G. Trefalt, Colloids and Interfaces, 4, 20 (2020).

    Article  CAS  Google Scholar 

  14. T. Cao and M. Elimelech, J. Colloid Interface Sci., 584, 456 (2021).

    Article  CAS  Google Scholar 

  15. Y Jiang, R. Raliya, J. D. Fortner and P. Biswas, Environ. Sci. Tech-nol., 50, 6964 (2016).

    Article  CAS  Google Scholar 

  16. R. Shu, Q. Yin, H. Xing, D. Tan, Y. Gan and G. Xu, Colloids Surf. A: Physicochem. Eng. Aspects, 488, 154 (2016).

    Article  CAS  Google Scholar 

  17. K. S. Vasu, R. Krishnaswamy, S. Sampath and A. K. Sood, Soft Mater, 9, 5874 (2013).

    Article  CAS  Google Scholar 

  18. R. Shu, Y. Gan and D. Tan, Soft Mater, 15, 184 (2017).

    Article  CAS  Google Scholar 

  19. A. Ojha and P. Thareja, Appl Surf. Sci., 435, 786 (2018).

    Article  CAS  Google Scholar 

  20. P. Borthakur, P. K. Boruah, N. Hussain, B. Sharma, M. R. Das, S. Matic, D. Reha and B. Minofar, J. Phys. Chem. C, 120, 14088 (2016).

    CAS  Google Scholar 

  21. E. A. Litmanovich, S. O. Zakharchenko and G. V. Stoichev, J. Phys. Chem. B, 111, 8567 (2007).

    Article  CAS  Google Scholar 

  22. X. T. Zhou, W. M. Chen, L. Y Chu, M. G. Yi and M. H. Chen, Chinese J. Chem. Eng., 12, 723 (2004).

    CAS  Google Scholar 

  23. Y. Gao, K. Chen, X. Ren, A. Alsaedi, T. Hayat and C. Chen, Environ. Sci. Technol., 52, 12208 (2018).

    Article  CAS  Google Scholar 

  24. V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourli-nos, K. S. Kim and R. Zboril, Chem. Rev., 116, 5464 (2016).

    Article  CAS  Google Scholar 

  25. Y. Liu, C. Chen, L. Liu, G. Zhu, Q. Kong, R. Hao and W Tan, Soft Mater., 13, 167 (2015).

    Article  CAS  Google Scholar 

  26. L. Liu, R. Zhang, Y. Liu, W Tan and G. Zhu, J. Mol. Model, 24 (2018).

  27. X. Lu, J. Yvonnet, F. Detrez and J. Bai, J. Compos. Mater, 52, 2767 (2018).

    Article  CAS  Google Scholar 

  28. B. Nigro, C. Grimaldi, M. A. Miller, P. Ryser and T. Schilling, J. Chem. Phys., 136, 164903 (2012).

    Article  CAS  Google Scholar 

  29. K. H. Chu, Y. Huang, M. Yu, J. Heo, J. R. V. Flora, A. Jang, M. Jang, C. Jung, C. M. Park, D. Kim and Y. Yoon, Sep. Purif. Technol., 181, 139 (2017).

    Article  CAS  Google Scholar 

  30. K. Yang, B. Chen, X. Zhu and B. Xing, Environ. Sci. Technol., 50, 11066 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21576188). The authors acknowledge the materials supply of Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tan.

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., You, J., Zhu, H. et al. Indicator of percolation transition in graphite oxide suspension containing cations. Korean J. Chem. Eng. 39, 1927–1935 (2022). https://doi.org/10.1007/s11814-022-1067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1067-6

Keywords

Navigation