Skip to main content
Log in

The role of membrane technology in acid mine water treatment: a review

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The activities of mining industries are attracting more scrutiny as the concern of limitations of conventional technology for wastewater treatment and the potential use of wastewater have resulted in accelerated attention in membrane technologies. The paucity of water and industrial environmental guidelines has resulted in the application of membrane technologies in wastewater treatment, especially in the mining industry. Although many conventional physical and chemical processes have been employed to treat acid mine drainage (AMD), they have, however, demonstrated low efficiency and high cost. Membrane technologies have proven to be an important part in the treatment of AMD in order to reduce water paucity. Apart from addressing water paucity, membrane technologies meet high-level application with respect to ease of use, adaptability and environmental impacts. This paper reviews the use of membrane in the published literature for the treatment of acid mine waters and, for the recovery of valuable metals from acid mine drainage effluents. The role of membrane technology in acid mine water treatment is discussed together with the factors that determine membrane performance for AMD treatment. The challenges of membrane technology in acid mine water treatment were reviewed and some solutions to the challenges are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Evangelou and Y. L. Zhang, Crit. Rev. Environ. Sci. Technol., 25, 141 (1995).

    Article  CAS  Google Scholar 

  2. A. Akcil and S. Koldas, J. Clean. Prod., 14, 1139 (2006).

    Article  Google Scholar 

  3. H. Al-Zoubi, A. Rieger, P. Steinberger, W. Pelz, R. Haseneder and G. Härtel, Desalin. Water Treat., 21, 148 (2010).

    Article  CAS  Google Scholar 

  4. P. Kauppila, M. L. Räisänen and S. Myllyoja, Best environmental practices in metal ore mining. The Finnish Environment 29en/2011, 88 (2013), http://hdl.handle.net/10138/40006.

  5. J. Skousen, C. E. Zipper, A. Rose, P. F. Ziemkiewicz, R. Nairn, L. M. McDonald and R. L. Kleinmann, Mine Water Environ., 36, 133 (2017).

    Article  CAS  Google Scholar 

  6. P. Younger, S. Banwart and R. Hedin, Mine water chemistry, Mine water: Hydrology, pollution, remediation, Springer-Verlag, New York, LLC (2002).

    Book  Google Scholar 

  7. M. Gitari, L. Petrik, O. Etchebers, D. Key, E. Iwuoha and C. Okujeni, J. Environ. Sci. Health- Part A, A41(8), 1729 (2006).

    Article  CAS  Google Scholar 

  8. M. Sengupta, The acid mine drainage problem from coal mines, environmental impacts of mining: Monitoring, restoring, and control, Lewis Publisher, USA (1993).

    Google Scholar 

  9. P. L. Younger, R. H. Coulton and E. C. Froggatt, Sci. Total Environ., 338, 137 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. D. C. Sicupira, T. T. Silva, A. C. Q. Ladeira and M. B. Mansur, Braz. J. Chem. Eng., 23, 577 (2015).

    Article  CAS  Google Scholar 

  11. K. Barrera, A. Briso, V. Ide, L. Martorana, G. Montes, C. Basualto, T. Borrmann and F. Valenzuela, Hydrometallurgy, 172, 19 (2017).

    Article  CAS  Google Scholar 

  12. E. Iakovleva, M. Sillanpää, S. Khan, K. Kamwilaisak, S. Wang and W. Z. Tang, Synthesis of sorbents from industrial solid wastes by modification with atomic layer deposition (ALD) for mine water treatment, Mine Water and Circular Economy IMWA (2017).

  13. D. Howard, C. Grobler, R. E. G. Robinson and P. M. Cole, Sustainable purification of mine water using ion exchange technology. The International Mine Water Conference, 19th–23rd, October 2009, Pretoria, South Africa (2009).

  14. R. W. Gaikwad, V. S. Sapkal and R. S. Sapkal, Acta Montanistica Slovaca, 15, 298 (2010).

    CAS  Google Scholar 

  15. M. Matlock, B. S. Howerton and D. A. Atwood, Water Res., 36, 4757 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. A. Petrilakova, M. Balintova and M. Holub, SSP-J Civil Eng., 9, 79 (2014).

    Google Scholar 

  17. M. M. G. Chartrand and N. J. Bunce, Appl. Electrochem., 33, 259 (2003).

    Article  CAS  Google Scholar 

  18. S. Radic, V. Vujčić, Z. Cvetković, P. Cvjetko and V. Oreščanin, Sci. Total Environ., 466, 84 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Herniwanti, J. B. Priatmadi, B. Yanuwiadi and Soemarno, Int. J. Basic Appl. Sci., 13, 14 (2013).

    Google Scholar 

  20. A. Rieger, P. Steinberger, W. Pelz, R. Haseneder and G. Härtel, Desalin. Water Treat., 6, 54 (2009).

    Article  CAS  Google Scholar 

  21. Z. Wang, H. Wu, L. C. Ciacchi and G. Wei, Nanomater., 8, 1 (2018).

    Google Scholar 

  22. D. Trumm, New Zeal J. Geol. Geop., 53, 195 (2010).

    Article  Google Scholar 

  23. K. L. Ford, Passive Treatment Systems for Acid Mine Drainage, University of Nebraska Lincoln, U.S. Bureau of Land Management Papers. Technical Note 409 (2003).

  24. R. S. Hedin, R. W. Narin and R. L. P. Kleinmann, Passive treatment of coal mine drainage. US Department of Interior Mission Statement, Information circular 9389 (1994).

  25. C. Zipper, C. Skousen and C. Jage, Passive treatment of acid-mine drainage. Virginia Cooperative Extension, Publication, 460–133, 1 (2018).

  26. J. G. Skousen, A. Sextone and P. F. Ziemkiewicz, Acid mine drainage control and treatment. In: Barnhisel, R. I., Darmody, R. G., Daniels, L. Eds. Reclamation of Drastically Disturbed lands. Agronomy Monograph Number 41. Madison WI, American Society of Agronomy (2000).

    Google Scholar 

  27. R. C. Thomas, Low maintenance passive treatment systems for mining Site contaminants [Assessed 17th June 2018] http://www.esaa.org/wp-content/uploads/2015/01/WaterTech2009-Presentation20.pdf (2009).

  28. B. Santamaria, W. H. J. Strosnider, M. R. A. Quispe and R. W. Nairn, Environ. Earth Sci., 72, 731 (2014).

    Article  CAS  Google Scholar 

  29. L. Figueroa, J. Seyler and T. Wildeman, Characterization of organic substrates used for anaerobic bioremediation of mining impacted waters. In: Proceedings of the 2004 International Mine Water Association Conference, Newcastle, England (2004).

  30. J. Taylor, S. Pape and N. Murphy, A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD). Fifth Australian workshop on acid drainage 29–31 August 2005 [Assessed 17th June 2018] http://www.earthsystems.com.au/wpcontent/uploads/2012/02/AMD_Treatment_Technologies_06.pdf(2005).

  31. Z. Agioutantis, Book of Proceedings of international workshop on new frontiers in reclamation: Facts and procedures in the extractive industries. 19th–21st September 2001, Greece (2001).

  32. P. L. Younger, S. A. Banwart and R. S. Hedin, Mine water: hydrology, pollution, remediation. Dordrecht, Netherlands, Kluwer Academic Publishers (2002).

    Book  Google Scholar 

  33. L. Raymond and M. William, Environ. Pollut., 17, 53 (1978).

    Article  Google Scholar 

  34. W. M. Spaulding and R. D. Ogden, Effects of surface the fish and wildlife resources of United State. U.S. Department of the interior, bureau of sport fisheries and wildlife resources Pub. No. 68 (1968).

  35. W. G. Kimmel, C. A. Miller and T. C. Moon, Proceedings of the Pennsylvania Academy of Science, 55, 137 (1981).

    CAS  Google Scholar 

  36. A. M. Bernardes, General Aspects of Membrane Separation Processes: In: Electrodialysis and Water Reuse Novel approaches. Springer-Verlag Berlin Heidelberg (2014).

  37. O. Agboola, J. Maree, R. Mbaya, C. M. Zvinowanda, G. F. Molelekwa, N. Jullok, B. Van der Bruggen, A. Volodine and C. Van Haesendonck, Korean J. Chem. Eng., 31, 141 (2014).

    Article  CAS  Google Scholar 

  38. K. K. Kefeni, T. A. M. Msagati and B. B. Mamba, J. Clean Prod., 151, 475 (2017).

    Article  CAS  Google Scholar 

  39. J. K. Bwapwa, Environ. Manage. Sustainable Dev., 7, 1 (2018).

    Article  Google Scholar 

  40. G. Juby, J. South Afr. Inst. Min. Metall., 92, 62 (1992).

    Google Scholar 

  41. C. Hanrahan, L. Karimi, A. Ghassemi and A. Sharbat, Desalin. Water Treat., 57, 11029 (2014).

    Article  CAS  Google Scholar 

  42. L. N. Le and S. P. Nunes, Sustainable Mater. Technol., 7, 1 (2016).

    Article  CAS  Google Scholar 

  43. D. Y. Koseoglu-Imer and A. Karagunduz, Envron. Technol. Rev., 7, 119 (2018).

    Google Scholar 

  44. A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy and J. Pagetti, Adv. Colloid Interface, 103, 77 (2003).

    Article  CAS  Google Scholar 

  45. A. Szymczyk and P. Fievet, J. Membr. Sci., 252, 77 (2005).

    Article  CAS  Google Scholar 

  46. C. Bellona, J. E. Jorg, E. Drewes, P. Xei and G. Amy, Water Res., 38, 2795 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Y. Roy, D. M. Warsinger and J. H. V. Lienhard, Desalination, 420, 241 (2017).

    Article  CAS  Google Scholar 

  48. L. H. Andrade, A. O. Aguiar, W. L. Pires, G. A. Miranda, L. P. T. Teixeira, G. C. C. Almeida and M. C. S. Amaral, Brazilian J. Chem. Eng., 34, 93 (2017).

    Article  CAS  Google Scholar 

  49. K. Häyrynen, J. Langwaldt, E. Pongrácz, V. Väisänen, M. Mänttäri and R. L. Keiski, Minerals Eng., 21, 2 (2008).

    Article  CAS  Google Scholar 

  50. A. Subramani, E. Cryer, L. Liu, S. Lehman, R. Y. Ning and J. G. Jacangelo, Sep. Purif. Technol., 88, 138 (2012).

    Article  CAS  Google Scholar 

  51. M. Mullett, R. Fornarelli and D. Ralph, Membrane, 4, 163 (2014).

    Article  CAS  Google Scholar 

  52. O. Agboola, T. Mokrani, E. R. Sadiku, A. Kolesnikov, O. I. Olukunle and J. P. Maree, Mine Water Environ., 36, 401 (2017).

    Article  Google Scholar 

  53. J. M. Gozálvez-Zafrilla, D. Sanz-Escribano, J. Lora-García and M. C. León Hidalgo, Desalination, 222, 272 (2008).

    Article  CAS  Google Scholar 

  54. M. Liu, Z. Lü, Z. Chen, S. Yu and C. Gao, Desalination, 281, 372 (2011).

    Article  CAS  Google Scholar 

  55. R. Fornarelli, M. Mullett and D. Ralph, Factors influencing nanofiltration of acid mine drainage, In: IMWA Annual Conference: Reliable Mine Water Technology, Golden CO, USA, IMWA, 563 (2013).

    Google Scholar 

  56. L. H. Andrade, F. D. S. Mendes, J. C. Espindola and M. C. S. Amaral, Sep. Purif. Technol., 126, 21 (2014).

    Article  CAS  Google Scholar 

  57. A. Shahmansouri and C. Bellona, Water Sci. Technol., 71, 309 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. A. Aguiar, L. Andrade, L. Grossi, W. Pires and M. Amaral, Sep. Purif. Technol., 192, 185 (2018).

    Article  CAS  Google Scholar 

  59. C. M. Nguyen, S. Bang, J. Cho and K. W. Kim, Desalination, 245, 82 (2009).

    Article  CAS  Google Scholar 

  60. A. Aguiar, L. Andrade, W. Pires and M. Amaral, Effect of feed pH in the Nanofiltration of Gold Acid Mine Drainage. 10th International Conference on acid rock drainage & IMWA Annual conference Chile, April 21st–24th (2015).

  61. A. Luptáková, E. Mačingová, I. Kotuličová and D. Rudzanová, IOP Conf. Series. Earth Environ. Sci., 44, 1 (2016).

    Google Scholar 

  62. S. S. Wadekar, T. Hayes, O. R. Lokare, D. Mittal and R. D. Vidic, Ind. Eng. Chem. Res., 56, 7355 (2017).

    Article  CAS  Google Scholar 

  63. C. Sierra, J. R. Á. Saiz and J. L. R. Gallego, Water Air Soil Pollut., 224, 1 (2013).

    Article  CAS  Google Scholar 

  64. C.-M. Zhong, Z.-L. Xu, X.-H. Fang and L. Cheng, Environ. Eng. Sci., 24, 1297 (2007).

    Article  CAS  Google Scholar 

  65. V. Masindi, M. S. Osman and A. M. Abu-Mahfouz, Desalination, 424, 45 (2017).

    Article  CAS  Google Scholar 

  66. D. K. Nordstrom, Ch. N. Alpers, C. J. Ptacek and D. W. Blowes, Environ. Sci. Technol., 34, 254 (2000).

    Article  CAS  Google Scholar 

  67. R. Mulyanti and H. Susanto, Earth Environ. Sci., 142, 1 (2018).

    Google Scholar 

  68. M. Elimelech, W. H. Chen and J. J. Waypa, Desalination, 95, 269 (1994).

    Article  CAS  Google Scholar 

  69. J. Schaep and C. Vandecasteele, J. Membr. Sci., 188, 129 (2001).

    Article  CAS  Google Scholar 

  70. A. Weis, M. R. Bird, M. Nyström and C. Wright, Desalination, 175, 73 (2005).

    Article  CAS  Google Scholar 

  71. A. Santos and S. Judd, Sep. Sci. Technol., 45, 850 (2010).

    Article  CAS  Google Scholar 

  72. M. O. Daramola, B. Silinda, S. Masondo and O. O. Oluwashina, J. South Afr. Inst. Min. Metall., 115, 1221 (2015).

    Article  CAS  Google Scholar 

  73. M. R. Teixeira, M. J. Rosa and M. Nyström, J. Membr. Sci., 265, 160 (2005).

    Article  CAS  Google Scholar 

  74. M. R. Teixeira and M. J. Rosa, Desalination, 151, 165 (2002).

    Article  Google Scholar 

  75. B. R. Long, Separation processes in waste minimization, Marcel Dekker Inc. USA (1995).

    Google Scholar 

  76. B. Blankert, B. H. L. Betlem and B. Roffel, J. Membr. Sci., 285, 90 (2006).

    Article  CAS  Google Scholar 

  77. C. H. Koo, A. W. Mohammad, F. Suja and M. Z. M. Talib, Sep. Purif. Rev., 42, 296 (2013).

    Article  CAS  Google Scholar 

  78. M. S. Muhamad, M. R. Salim and W.-J. Lau, Korean J. Chem. Eng., 32, 2319 (2015).

    Article  CAS  Google Scholar 

  79. K. A. Faneer, R. Rohani, A. W. Mohammad and M. M. Ba-Abbad, Korean J. Chem. Eng., 34, 2944 (2017).

    Article  CAS  Google Scholar 

  80. C. C. Koo, K. Wong, W. Chong and H. Thiam, J. Eng. Sci. Technol., 11, 987 (2016).

    Google Scholar 

  81. A. K. Pabby, S. S. Rizvi and A. M. S. Requena, Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, CRC Press (2015).

  82. B. K. C. Chan and A. W. L. Dudeney, Miner. Eng., 21, 272 (2008).

    Article  CAS  Google Scholar 

  83. K. Xie, S. Xia, J. Song, J. Li, L. Qui, J. Wang and S. Zhang, J. Chem., 765971, 1 (2014).

    Google Scholar 

  84. W. C. L. Lay, Y. Liu and A. G. Fane, Water Res., 44, 21 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. J. H. Choi, S. H. Lee, K. Fukushi and K. Y. Yamamoto, Chemosphere, 67, 1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. M. Mathaba, N. Sithole and T. Mashifana, IOP Conf. Series: Earth and Environmental Science, 120, 1 (2018).

    Google Scholar 

  87. C. Park, H. Kim, S. Hong and S.-I. Choi, J. Membr. Sci., 284, 248 (2006).

    Article  CAS  Google Scholar 

  88. J. H. Wang, Y. Qing and C. Qing, Environ. Sci. Manage., 34, 54 (2009).

    CAS  Google Scholar 

  89. F. Bayer, J. Laurinonyte, A. Zwijnenburg, A. J. M. Stams and C. M. Plugge, J. Eng., 1 (2017).

  90. K. B. Park, C. Choi, H. W. Yu, S. R. Chae and I. S. Kim, Environ. Eng. Res., 23, 474 (2018).

    Article  Google Scholar 

  91. Q. She, C. Y. Tang, Y. Wang and Z. Zhang, Desalination, 249, 1079 (2009).

    Article  CAS  Google Scholar 

  92. W. Sun, J. Liu, H. Chu and B. Dong, Membrane, 3, 226 (2013).

    Article  CAS  Google Scholar 

  93. A. O. Aguiar, L. H. Andrade, B. C. Ricci, W. L. Pires, G. A. Miranda and M. C. S. Amaral, Sep. Purif. Technol., 170, 360 (2016).

    Article  CAS  Google Scholar 

  94. I. Rahayu, A. Anggraeni, M. S. S. Ukun and H. B. Bahti, IOP Conf. Series. Mater. Sci. Eng., 196, 1 (2017).

    Article  Google Scholar 

  95. H. Susanto, Teknologi Membran. Semarang: Badan Penerbit Universitas Diponegoro (2011).

  96. A. M. F. Shaaban, A. I. Hafez, M. A. Abdel-Fatah, N. M. Abdel-Monem and M. H. Mahmoud, Egypt J. Pet., 25, 79 (2016).

    Article  Google Scholar 

  97. G. Khatinzadeh, M. Mahdyarfar, A. Mehdizadeh, A. Esmailzadeh and A. Sattari, J. Pet. Sci. Technol., 6, 30 (2016).

    Google Scholar 

  98. S. P. Agashichev, Desalination, 236, 252 (2009).

    Article  CAS  Google Scholar 

  99. Z. Beril Gonder, S. Arayici and H. Barlas, Sep. Purif. Technol., 76, 292 (2011).

    Article  CAS  Google Scholar 

  100. Dow, Factors affecting RO membrane performance. FILMTEC membranes, http://www.watertreatmentguide.com/Factors_Affecting_RO_Membrane_Performance.pdf [Assessed 27th June 2018] (1998).

  101. L. Henthorne and B. Boysen, Desalination, 356, 129 (2015).

    Article  CAS  Google Scholar 

  102. W. Guo, H. H. Ngo and J. Li, Bioresour. Technol., 122, 27 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. K. A. Faneer, R. Rohani, A. W. Mohammad and M. M. Ba-Abbad, Korean J. Chem. Eng., 34, 2944 (2017).

    Article  CAS  Google Scholar 

  104. A. Luptáková, E. Mačingová, I. Kotuličová and D. Rudzanová, IOP Conf. Series. Earth Environ Sci., 44, 1 (2016).

    Google Scholar 

  105. A. A. S. Gallab, M. E. A. Ali, H. A. Shawky and M. S. A. Abdel-Mottaleb, J. Membr. Sci. Technol., 7, 1 (2017).

    Google Scholar 

  106. V. Bologo, J. P. Maree and C. M. Zvinowanda, Treatment of acid mine drainage using magnesium hydroxide. International Mine Water Conference (IMWA), 19th–23rd October 2009, Pretoria, South Africa (2009).

  107. P. Juholin, Hybrid membrane processes in industrial water treatment: Separation and recovery of inorganic compounds, Universitatis Ouluensis, C 595 (2016).

  108. J. Arevalo, R. Sandin, M. D. Kennedy, S. G. Salinas Rodriguez, F. Rogalla and V. M. Monsalvo, Water Sci. Technol., 77, 2858 (2018).

    CAS  PubMed  Google Scholar 

  109. Suez Water Technology and Solution [Assessed 23rd December 2018], https://www.suezwatertechnologies.com/products/membrane-chemicals/ro-membrane-antiscalants.

  110. Genesys International [Assessed 23rd December 2018], http://www.genesysro.com/membrane-anti-scalants-antiscalant-chemicals.php.

  111. B. Gu, X. Y. Xu and C. A. Adjiman, Comput. Chem. Eng., 96, 248 (2017).

    Article  CAS  Google Scholar 

  112. AMTA, Pretreatment for Membrane Processes: Improving America’s Waters Through Membrane Treatment and Desalting, [Assessed 23rd June 2018] (2007), https://www.amtaorg.com/wp-content/uploads/12_Pretreatment.pdf.

  113. P. I. Nkwonta, Roughing filters: an alternative passive pre-treatment of coal mine water in South Africa. MS thesis, Dept of Civil Eng, Tshwane Univ of Technology (2010).

  114. H. Kyllönen, A. Grönroos, E. Järvelä, J. Heikkinen and C. Tang, Mine Water Environ., 36, 193 (2017).

    Article  CAS  Google Scholar 

  115. N. Greve, New membrane may allow purification of AMD. Mining Weekly article [Assessed 22nd Dec 2018] (2013), http://www.miningweekly.com/article/new-membrane-may-allow-purification-of-acid-mine-drainage-2013-03-22.

  116. Y. Y. S. Qiao, R. Jin, J. Zhou and X. Quan, Korean J. Chem. Eng., 35, 964 (2018).

    Article  CAS  Google Scholar 

  117. S. M. Hosseini, E. Bagheripour and M. Ansari. Korean J. Chem. Eng., 34, 1774 (2017).

    Article  CAS  Google Scholar 

  118. H. Huang, Y. Ying and X. Peng, J. Mater. Chem. A, 2, 13772 (2014).

    Article  CAS  Google Scholar 

  119. L. Chen, G. S. Shi, J. Shen, B. Q. Peng, B. W. Zhang, Y. Z. Wang, F. G. Bian, J. J. Wang, D. Y. Li, Z. Qian, G. Xu, G. Liu, J. Zheng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li and H. Fang, Nature, 550, 380 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. L. Ma, X. Dong, M. Chen, L. Zhu, C. Wang, F. Yang and Y. Dong, Membrane, 7, 1 (2017).

    Google Scholar 

  121. L. Wang, X. J. Song, T. Wang, S. Wang, Z. Wang and C. Gao, Appl. Surf. Sci., 330, 118 (2015).

    Article  CAS  Google Scholar 

  122. H. J. Kim, K. Choi, Y. Baek, D. G. Kin, J. Shim, J. Yoon and J. C. Lee, ACS Appl. Mater. Interfaces, 6, 2819 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. J. G. Skousen, P. F. Ziemkiewicz and L. M. McDonald, The Extractive Indust. Soc., 6, 241 (2019).

    Article  Google Scholar 

  124. G. Naidu, S. Ryu, R. Thiruvenkatachari, S. Choi, S. Jeong and S. Vigneswaran, Environ. Pollut., 217, 1110 (2019).

    Article  CAS  Google Scholar 

  125. J. Cotruvo, Technology for brine concentrate management and recovery. Water technology [Assessed 23rd December 2018] (2018), https://www.watertechonline.com/brine-concentrate-management-and-recovery/.

  126. M. K. Souhaimi, Membrane technologies for brine treatment and membrane reuse. PhD thesis, Departamento de Física Aplicada I (Termología), UNIVERSIDAD COMPLUTENSE DE MADRID (2018).

  127. M. González-Muñoz, A. M. Rodríguez, S. Luque and J. R. Álvarez, Desalination, 200, 742 (2006).

    Article  CAS  Google Scholar 

  128. D. B. Johnson, K. B. Hallberg, Sci. Total Environ., 338, 3 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. S. Vigneswaran, H. H. Ngo, D. S. Chaudhary and Y. T. Hung, Physico-chemical treatment processes for water reuse. In: L. K. Wang, Y. T. Hung and N. K. Shammas, (Eds.), Physicochemical Treatment Processes, Vol. 3. Humana Press, New Jersey (2004).

    Google Scholar 

  130. J. A. Pandya, Nanofiltration for recovery of heavy metal from wastewater [Er. No. 140110730001] Chemical engineering department, GCET 1–19 (2015).

  131. S. Altin, E. Oztekin and A. Altin, Korean J. Chem. Eng., 34, 2218 (2017).

    Article  CAS  Google Scholar 

  132. B. Sheth and K. Nath, Korean J. Chem. Eng., 35, 1878 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluranti Agboola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agboola, O. The role of membrane technology in acid mine water treatment: a review. Korean J. Chem. Eng. 36, 1389–1400 (2019). https://doi.org/10.1007/s11814-019-0302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0302-2

Keywords

Navigation