Skip to main content

Sustainable Wastewater Treatment Using Membrane Technology

  • Chapter
  • First Online:
Membranes for Water Treatment and Remediation

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 319 Accesses

Abstract

Overexploitation and pollution of freshwater resources throughout the world have led to a rising scarcity of potable water. As the population increases, industrial, agricultural, and domestic activities increase accordingly to cater to the growing needs. Treatment of wastewater via different technologies have been gaining interest in recent times. Among the various physical, chemical and biological methods utilized for wastewater treatment, adsorption has been found to be the most simple, inexpensive and efficient technology. Adsorptive membranes have become key constituents in water treatment schemes because of their high pollution removal capability. It is a cost-effective technique to attain a remediated effluent. The role of membranes in wastewater treatment process can increase system reliability as well as lower process cost. The realization of the potential for membrane-based innovations in wastewater treatment requires a deeper understanding of the membrane structure and mechanism of the process. The present work reviews the various promising membranes in recent literature for remediation of water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adami L, Schiavon M (2021) From circular economy to circular ecology: a review on the solution of environmental problems through circular waste management approaches. Sustainability 13:925

    Article  Google Scholar 

  2. Adedayo A, Badejo David O, Omole Julius M et al (2018) Municipal wastewater management using Vetiveria zizanioides planted in vertical flow constructed wetland. Appl Water Sci 8:110. https://doi.org/10.1007/s13201-018-0756-0

    Article  CAS  Google Scholar 

  3. Ahluwalia SS, Goyal D (2005) Microbial and plant derived biomass for removal of heavy metals from waste water. Biores Technol 98:2243–2257

    Article  Google Scholar 

  4. Ahmad J, Naeem S, Ahmad M et al (2019) A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. J Environ Manag 246:214–228. https://doi.org/10.1016/j.jenvman.2019.05.152

  5. Ahmadi F, Zinatizadeh AA, Asadi A et al (2020) Simultaneous carbon and nutrients removal and PHA pro-duction in a novel single air lift bioreactor treating an industrial wastewater. Environ Technol Innov 18:100776

    Article  Google Scholar 

  6. Ali MEA, Wang L, Wang X et al (2016) Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386:67–76

    Article  CAS  Google Scholar 

  7. Almuktar SAAAN, Scholz M (2016) Experimental assessment of recycled diesel spill-contaminated domestic wastewater treated by reed beds for irrigation of sweet peppers. Int J Environ Res Publ Health 13:208. https://doi.org/10.3390/ijerph13020208

    Article  CAS  Google Scholar 

  8. Almuktar SAAAN, Scholz M, Al-Isawi RHK et al (2015) Recycling of domestic wastewater treated by vertical-flow wetlands for watering of vegetables. Wat Pract Technol 10:445–464. https://doi.org/10.2166/wpt.2015.052

    Article  Google Scholar 

  9. Alzahrani S, Mohammad AW (2014) Challenges and trends in membrane technology implementation for produced water treatment: a review. J Water Process Eng 4:107–133

    Google Scholar 

  10. Angayarkanni J, Palaniswamy M, Swaminathan K (2003) Biotreatment of distillery effluent using Aspergillus niveus. Bull Environ Contam Toxicol 70:268–277

    Google Scholar 

  11. Arsuaga J, Sotto A, del Rosario G et al (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J Membr Sci 428:131–141. https://doi.org/10.1016/j.memsci.2012.11.008

  12. Asmatulu R, Muppalla H, Veisi Z et al (2013) Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles. Membranes 3:375–388

    Article  Google Scholar 

  13. Banerjee P, kumar Dey T, Sarkar S et al (2016) Treatment of cosmetic effluent in different configurations of ceramic UF membrane-based bioreactor: toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis). Chemosphere 146:133–144. https://doi.org/10.1016/j.chemosphere.2015.12.004

  14. Barman SR, Banerjee P, Mukhopadhayay A et al (2017) Biodegradation of acenapthene and naphthalene by Pseudomonas mendocina: process optimization, and toxicity evaluation. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.09.012

    Article  Google Scholar 

  15. Barman SR, Roy U, Das P et al (2021) Membrane processes for removal of Polyaromatic hydrocarbons (PAHs) from waste water. Green Chem Water Remediat: Res Appl. https://doi.org/10.1016/B978-0-12-817742-6.00006-2

  16. Barman SR, Banerjee P, Mukhopadhayay A et al (2022) Biopolymer linked activated carbon‑nano‑bentonite composite membrane for efficient elimination of PAH mixture from aqueous solutions. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-02223-0

  17. Ben-Sasson M, Lu X, Bar-Zeev E et al (2014) In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res 62:260–270. https://doi.org/10.1016/j.watres.2014.05.049

  18. Bethi B, Sonawane SH, Bhanvase BA et al (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process IntensIication 1(09):178–189

    Article  Google Scholar 

  19. Bhat TA (2014) An analysis of demand and supply of water in India. J Environ Earth Sci 4:67–72

    Google Scholar 

  20. Bolto B, Gregory J (2007) Review: organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  CAS  Google Scholar 

  21. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182

    Article  CAS  Google Scholar 

  22. Castillo A, Llabres P, Mata-Alvarez J (2010) A kinetic study of a combined anaerobic–aerobic system for treatment of domestic sewage. Water Res 33:1742–1747

    Article  Google Scholar 

  23. Castro-Munoz R, Ahmad MZ, Fíla V (2020) Tuning of nano-based materials for embedding into low-permeability polyimides for a featured gas separation. Chemistry 7:1–14. https://doi.org/10.3389/fchem.2019.00897

  24. Chabot V, Higgins D, Yu A et al (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596. https://doi.org/10.1039/c3ee43385d

  25. Chaudhuri SR, Salodkar S, Sudarshan M et al (2008) Role of water hyacinth-mediated phytoremediation in waste water purification at east Calcutta wetland. Res J Environ Sci 5(1):53–62. https://doi.org/10.1080/15693430701833427

    Article  Google Scholar 

  26. Chen X, Qiu M, Ding H et al (2016) A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8(10):5696–5705

    Google Scholar 

  27. Cicek N, Winnen H, Suidan MT et al (2005) Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Res 32:1553–1563

    Article  Google Scholar 

  28. Cornel P, Meda A, Bieker S (2011) Wastewater as a source of energy, nutrients and service water. Water Sci 36(6–7):333–340

    Google Scholar 

  29. De Sena RF, Moreira RFPM, José HJ (2008) Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation. Bioresour Technol 99:8221–8225

    Article  Google Scholar 

  30. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 216:442–448. https://doi.org/10.1016/j.ijheh.2011.08.002

  31. Del Pozo R, Diez V (2003) Organic matter removal in combined anaerobic–aerobic fixed-film bioreactors. Water Res 37:3561–3568

    Article  Google Scholar 

  32. Deshpande B, Agrawal P, Yenkie M et al (2020) Prospective of nanotechnology in degradation of waste water: a new challenges. Nano-Struct Nano-Objects 22:100442

    Article  CAS  Google Scholar 

  33. Dubey SK, Dubey J, Mehra S et al (2013) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol 10:1125–1132

    Google Scholar 

  34. Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF et al (2014) A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chem Eng J 237:70–80

    Google Scholar 

  35. Evangelista S, Viccione G, Siani O (2019) A new cost effective, long life and low resistance filter cartridge for water treatment. J Water Process Eng 27:1–14. https://doi.org/10.1016/j.jwpe.2018.11.004

  36. Ezugbe EO, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10:89. https://doi.org/10.3390/membranes10050089

  37. Faulwetter JL, Gagnon V, Sundberg C et al (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35(6):987–1004. https://doi.org/10.1016/j.ecoleng.2008.12.030

    Article  Google Scholar 

  38. Fazal S, Zhang B, Zhong Z et al (2015) Industrial wastewater treatment by using MBR (membrane bioreactor) review study. J Environ Prot Sci 6:584–598

    Article  CAS  Google Scholar 

  39. Feng C, Khulbe KC, Matsuura T et al (2013) Preparation and characterization of electrospun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  CAS  Google Scholar 

  40. Fu Y, Luo T, Mei Z et al (2018) Dry anaerobic digestion technologies for agricultural straw and acceptability in China. Sustainability 10:4588

    Article  Google Scholar 

  41. Gadipelly C, Paerez-Gonzealez A, Yadav GD et al (2014) Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res 53(29):11571–11592

    Article  CAS  Google Scholar 

  42. Gopal R, Kaur S, Ma Z et al (2006) Electrospun nanofibrous filtration membrane. J Membrane Sci 28:581–586

    Article  Google Scholar 

  43. Gottfried A, Shepard AD, Hardiman K et al (2008) Impact of recycling filter backwash water on organic removal in coagulation sedimentation processes. Water Res 42:4683–4691. https://doi.org/10.1016/j.watres.2008.08.011

    Article  CAS  Google Scholar 

  44. Gzara L, Rehan ZA, Khan SB et al (2016) Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. J Taiwan Inst Chem Eng 65:405–419

    Article  CAS  Google Scholar 

  45. Haandel AV, Lubbe JVD (2007) Handbook biological waste water treatment: design and optimisation of activated sludge systems. Appl Biochem Biotechnol 43:456–467

    Google Scholar 

  46. Hashemian S, Salari K, Yazdi ZA (2014) Preparation of activated carbon from agricultural wastes (almond Shell and orange peel) for adsorption of 2-pic from aqueous solution. J Ind Eng Chem 20:1892–1900

    Article  CAS  Google Scholar 

  47. Hassandoost R, Pouran SR, Khataee A et al (2019) Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J Hazard Mater 376:200–211. https://doi.org/10.1016/j.jhazmat.2019.05.035

  48. Hofs B, Schurer R, Harmsen DJH et al (2013) Characterization and performance of a commercial thin film nanocomposite seawater reverse osmosis membrane and comparison with a thin film composite. J Membr Sci 446:68–78

    Article  CAS  Google Scholar 

  49. Hossain N, Bhuiyan MA, Pramanik BK et al (2020) Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: a critical review. J Clean Prod 255:120261. https://doi.org/10.1016/j.jclepro.2020.120261

  50. Hu Z, Wen X, Si X (2016) Pre-ultrafiltration or pre-ozonation for EDCs removal in a combined ultrafiltration and ozonation process. J Chem Technol Biotechnol 91(12):2929–2934

    Article  CAS  Google Scholar 

  51. Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  52. Huang C, Zeng P, Yang S et al (2016) Water reclamation and reuse. Water Environ Res 88:1261–1278. https://doi.org/10.2175/106143016X14696400494858

    Article  CAS  Google Scholar 

  53. Humplik T, Lee J, O’Hern SC et al (2011) Nanostructured materials for water desalination. Nanotechnology 22:292001

    Article  CAS  Google Scholar 

  54. Jadia CD, Fulekar MH (2009) Review on phytoremediation of heavy metals: recent techniques. Afr j Biotechnol 8(6):921

    CAS  Google Scholar 

  55. Jame SA, Zhou Z (2016) Electro-chemical carbon nanotube filters for water and wastewater treatment. Nanotechnol Rev 5(1):41–50

    Article  CAS  Google Scholar 

  56. James ID, (2002) Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review. Environ Modell Softw 17:363–385. https://doi.org/10.1016/S1364-8152(01)00080-9

  57. Jiménez S, Andreozzi M, Micó MM et al (2019) Produced water treatment by advanced oxidation processes. Sci Total Environ 666:12–21

    Article  Google Scholar 

  58. Joseph L, Jun BM, Flora JRV et al (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229:142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198

  59. Kadirvelu K, Namasivayam C, Thamaraiselve K (2001) Removal of heavy metal from industrial wastewaters by adsorption on to activated carbon prepared from an agricultural solid waste. Biores Technol 76:63–65

    Article  CAS  Google Scholar 

  60. Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207

    Article  CAS  Google Scholar 

  61. Karimi-Maleh H, Ayati A Ghanbari S et al (2021) Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: a comprehensive review. J Mol Liq 329:115062. https://doi.org/10.1016/j.molliq.2020.115062

  62. Khalid A, Abdel-Karim A, Atieh MA et al (2018) PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Sep Purif Technol 190:165–176

    Article  CAS  Google Scholar 

  63. Kim ES, Hwang G, El-Din MG et al (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394–395:37–48

    Article  Google Scholar 

  64. Kolya H, Tripathy T (2013) Preparation, investigation of metal ion removal and flocculation performances of grafted hydroxyethyl starch. Int J Biol Macromol 62:557–564. https://doi.org/10.1016/j.ijbiomac.2013.09.018

  65. Koyuncu I, Sengur R, Turken T et al (2015) Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. In: Advances in membrane technologies for water treatment. Woodhead Publishing, Oxford, UK, pp 83–128

    Google Scholar 

  66. Krüger R, Vial D, Ariin D et al (2016) Novel ultrafiltration membranes from low-fouling copolymers for RO pretreatment applications. Desalin Water Treat 57(48–49):23185–23195

    Google Scholar 

  67. Kryvoruchko A, Yurlova L, Kornilovich B (2002) Purification of water containing heavy metals by chelating-enhanced ultrafiltration. Desalination 144(1):243–248

    Article  CAS  Google Scholar 

  68. Kumar AG, Anjana K, Hinduja M et al (2019) Review on plastic wastes in marine environment e biodegradation and biotechnological solutions. Mar Pollut Bull 150:110733. https://doi.org/10.1016/j.marpolbul.2019.110733

    Article  CAS  Google Scholar 

  69. Kumar V, Kumar R, Nayak A et al (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 194:24–34. https://doi.org/10.1016/j.cis.2013.03.003

  70. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Membr Sci 370:1–22

    Article  CAS  Google Scholar 

  71. Li ZH, Zhang HP, Zhang P et al (2008) Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J Membr Sci 322:416–422

    Article  CAS  Google Scholar 

  72. Liao S, Chang W (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Photogramm Eng Remote Sens 54:177–185

    Google Scholar 

  73. Liao Y, Loh C H, Tian M et al (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 77:69–94. https://doi.org/10.1016/j.progpolymsci.2017.10.003

  74. Lin H, Gao W, Meng F (2012) Membrane bioreactors for industrial wastewater treatment: a critical review. Crit Rev Environ Sci Technol 42(7):677–740

    Article  CAS  Google Scholar 

  75. Lo KV, Liao PH (2012) Anaerobic–aerobic biological treatment of a mixture of cheese whey and dairy manure. Biol Wastes 28:91–101

    Article  Google Scholar 

  76. Lofrano G, Carotenuto M, Libralato G et al (2016) Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res 92:22–37

    Article  CAS  Google Scholar 

  77. Ma Z, Lu X, Wu C et al (2017) Functional surface modification of PVDF membrane for chemical pulse cleaning. J Membr Sci 524:389–399

    Article  CAS  Google Scholar 

  78. Ma D, Su M, Qian J et al (2020) Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep Purif Technol 242:116822. https://doi.org/10.1016/j.seppur.2020.116822

    Article  CAS  Google Scholar 

  79. Mai Z (2014) Membrane processes for water and wastewater treatment: study and modelling of interactions between membrane and organic matter. HAL. https://tel.archives-ouvertes.fr/tel-00969165

  80. Malik OA, Hsu A, Johnson LA et al (2015) A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environ Sci Policy 484:172–185. https://doi.org/10.1016/j.envsci.2015.01.005

    Article  Google Scholar 

  81. Medeiros RC, de Fava N, Freitas BLS et al (2020) Drinking water treatment by multistage filtration on a household scale: efficiency and challenges. Water Res 178:115816. https://doi.org/10.1016/j.watres.2020.115816

    Article  CAS  Google Scholar 

  82. Mierzwa C, Arieta V, Verlage M et al (2013) Effect of clay nanoparticles on the structure and performance of polyethersulfone ultra filtration membranes. Desalination 314:147–158

    Article  CAS  Google Scholar 

  83. Mo H, Ng H (2010) An experimental study on the effect of spacer on concentration polarization in a long channel reverse osmosis membrane cell. Water Sci Technol 61:2035–2041

    Article  CAS  Google Scholar 

  84. Narayanan CM, Biswas S (2016) Studies on waste water treatment in three phase semifluidized bed bioreactors—computer aided analysis and software development. J Mod Chem Chem Technol. 7:1–21

    CAS  Google Scholar 

  85. Niu J, Liu Q, Lv J et al (2020) Review on microbial enhanced oil recovery: mechanisms, modeling and field trials. J Petrol Sci Eng 192:107350. https://doi.org/10.1016/j.petrol.2020.107350

    Article  CAS  Google Scholar 

  86. Ntuli F, Kuipa PK, Muzenda E (2011) Designing of sampling programmes for industrial effluent monitoring. Environ Sci Pollut Res Int 18:479–484

    Article  CAS  Google Scholar 

  87. Nystrom F, Nordqvist K, Herrmann I et al (2020) Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Res (Inpress Accepted Proof). https://doi.org/10.1016/j.watres.2020.115919.

  88. Odjadjare EE, Okoh AI (2010) Physicochemical quality of an urban municipal wastewater effluent and its impact on the receiving environment. Environ Monit Assess 170(1):383–394. https://doi.org/10.1007/s10661-009-1240-y

  89. Orooji Y, Ghanbari M, Amiri O et al (2020) Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photocatalytic performance through sunlight and antimicrobial activity. J Hazard Mater 389:122079. https://doi.org/10.1016/j.jhazmat.2020.122079

    Article  CAS  Google Scholar 

  90. Pal P, Kumar R (2013) Treatment of coke wastewater: a critical review for developing sustainable management strategies. Separ Purif Rev 43:89–123

    Article  Google Scholar 

  91. Parande AK, Sivashanmugam A, Beulah H et al (2009) Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent. J Hazard Mater 168:800–805

    Article  CAS  Google Scholar 

  92. Park E, Enander R, Barnett SM et al (2001) Pollution prevention and biochemical oxygen demand reduction in a squid processing facility. J Hazard Mater 9:341–349

    Google Scholar 

  93. Pejman AH, Bidhendi GN, Karbassi AR et al (2009) Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int J Environ Sci Technol 6:467–476. https://doi.org/10.1007/BF03326086

  94. Pendashteh A, Fakhru’L-Razi A, Chuah T et al (2010) Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms. Environ Technol 2010(31):1229–1239

    Article  Google Scholar 

  95. Price JI, Heberling MT (2018) The effects of source water quality on drinking water treatment costs: a review and synthesis of empirical literature. Ecol Econ 151:195–209. https://doi.org/10.1016/j.ecolecon.2018.04.014

  96. Qasim M, Darwish NN, Mhiyo S et al (2018) The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination 443:143–164

    Article  CAS  Google Scholar 

  97. Qin H, Hu T, Zhai Y et al (2020) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777. https://doi.org/10.1016/j.envpol.2019.113777

    Article  CAS  Google Scholar 

  98. Qu F, Liang H, Zhou J et al (2014) Ultrailtration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: effects of membrane pore size and surface hydrophobicity. J Membr Sci 449:58–66

    Article  CAS  Google Scholar 

  99. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water e a comprehensive review. Resour Effic Technol 2:175–184. https://doi.org/10.1016/j.reffit.2016.09.004

  100. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A et al (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng J 323:361–380. https://doi.org/10.1016/j.cej.2017.04.106

  101. Samal S (2020) Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite. Powder Technol 366:43–51. https://doi.org/10.1016/j.powtec.2020.02.054

    Article  CAS  Google Scholar 

  102. Santhosh C, Velmurugan V, Jacob G et al (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  103. Santoro C, Arbizzani C, Erable B et al (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

  104. Saravanan A, Kumar PS, Renita AA (2018) Hybrid synthesis of novel material through acid modification followed ultrasonication to improve adsorption capacity for zinc removal. J Clean Prod 172:92–105. https://doi.org/10.1016/j.jclepro.2017.10.109

  105. Shah P, Murthy CN (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98

    Article  CAS  Google Scholar 

  106. Shao F, Dong L, Dong H et al (2017) Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance. J Membr Sci 525:9–17

    Article  CAS  Google Scholar 

  107. Shevate R, Kumar M, Karunakaran M et al (2018) Surprising transformation of a block copolymer into a high performance polystyrene ultrafiltration membrane with a hierarchically organized pore structure. J Mater Chem 6(10):4337–4345

    Article  CAS  Google Scholar 

  108. Sklyar V, Epov A, Gladchenko M et al (2003) Combined biologic (anaerobic–aerobic) and chemical treatment of starch industry wastewater. Appl Biochem Biotechnol 109:253–262

    Article  CAS  Google Scholar 

  109. Soltan ME, Rashed MN (2003) Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv Environ Res 7(2):321–334. https://doi.org/10.1016/S1093-0191(02)00002-3

    Article  CAS  Google Scholar 

  110. Speth TF, Summers RS, Gusses AM (1998) Nanofiltration foulants from a treated surface water. Environ Sci Technol 32:3612–3617

    Article  CAS  Google Scholar 

  111. Su X, Li W, Palazzolo A et al (2018) Concentration polarization and permeate flux variation in a vibration enhanced reverse osmosis membrane module. Desalination 433:75–88

    Article  CAS  Google Scholar 

  112. Teh CY, Budiman PM, Shak KPY et al (2016) Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363–4389

    Article  CAS  Google Scholar 

  113. Topuz F, Holtzl T, Szekely G (2021) Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources. Chem Eng J 419:129443. https://doi.org/10.1016/j.cej.2021.129443

  114. Torki M, Nazari N, Mohammadi T (2017) Evaluation of biological fouling of RO/MF membrane and methods to prevent it. Eur J Adv Eng Technol 4(9):707–710

    CAS  Google Scholar 

  115. Validi M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  Google Scholar 

  116. Van de Lisdonk CAC, van Paassen JAM, Schippers JC (2000) Monitoring scaling in nanofiltration and reverse osmosis membrane systems. Desalination 132:101–108

    Article  Google Scholar 

  117. Van der Bruggen B, Vandecasteele C, Van Gestel T et al (2003) A review of pressure-driven membrane processes in process and wastewater treatment and in drinking water production. Environ Prog 22(1):46–56

    Article  Google Scholar 

  118. Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens Bioelectron 41:1–11

    Article  CAS  Google Scholar 

  119. Wu Y, Li T, Yang L (2012) Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review. Bioresour Technol 107:10–18. https://doi.org/10.1016/j.biortech.2011.12.088

    Article  CAS  Google Scholar 

  120. Wu MB, Lv Y, Yang HC et al (2016) Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J Membr Sci 515:238–244

    Article  CAS  Google Scholar 

  121. Xu YC, Wang ZX, Cheng XQ et al (2016) Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment. Chem Eng J 303:555–564

    Article  CAS  Google Scholar 

  122. Xu D, Lee LY, Lim FY et al (2020a) Water treatment residual: a critical review of its applications on pollutant removal from storm water runoff and future perspectives. J Environ Manag 259:109649. https://doi.org/10.1016/j.jenvman.2019.109649

    Article  CAS  Google Scholar 

  123. Xu X, Yang Y, Wang G et al (2020b) Removal of heavy metals from industrial sludge with new plant-based washing agents. Chemosphere 246:125816. https://doi.org/10.1016/j.chemosphere.2020.125816

    Article  CAS  Google Scholar 

  124. Yakout SM, Sharaf El-Deen G (2016) Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab J Chem 9:1155–1162

    Article  Google Scholar 

  125. Yang K, Yue Q, Kong J, et al (2016) Microbial diversity in combined UAF e UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment. Chem Eng J 285:319–330. https://doi.org/10.1016/j.cej.2015.10.019

  126. Yang Z, Zhou S (2008) The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere 72:1751–1756

    Article  CAS  Google Scholar 

  127. Zhang S, Qiu G, Ting YP et al (2013) Silver-PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment. Colloids Surf A 436:207–214

    Article  CAS  Google Scholar 

  128. Zhang L, Zhang P, Wang M et al (2016) Research on the experiment of reservoir water treatment applying ultrailtration membrane technology of different processes. J Environ Biol 37(5):1007

    CAS  Google Scholar 

  129. Zhou B, Li Y, Zheng G et al (2018) Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite films for switchable thermochromic applications. J Mater Chem 6:8360–8371

    CAS  Google Scholar 

  130. Zhu YL, Zayed AM, Qian JH et al (1999) Phytoaccmulation of trace elements by wetland plants: II. Water Hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shramana Roy Barman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, S., Barman, S.R. (2023). Sustainable Wastewater Treatment Using Membrane Technology. In: Nadda, A.K., Banerjee, P., Sharma, S., Nguyen-Tri, P. (eds) Membranes for Water Treatment and Remediation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-9176-9_2

Download citation

Publish with us

Policies and ethics