Skip to main content
Log in

Predicting the fast transition conditions by the correlation of particle entrainment rate

  • Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A model for predicting the fast transition condition in a riser of a circulating fluidized bed was proposed using the correlation of particle entrainment rate. The saturation carrying capacity of Bai and Kato could be regarded as the particle entrainment rate at the fast transition condition. The correlation of Choi et al. on particle entrainment rate could be used as a tool to predict the fast transition condition. The effect of interparticle forces seemed to be negligible at the fast transition condition. The model was in fair agreement with the measured values at the fast transition condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bai and K. Kato, J. Chem. Eng. Japan, 28, 179 (1995).

    Article  CAS  Google Scholar 

  2. W. Namkung, S.W. Kim and S.D. Kim, Chem. Eng. J., 72, 245 (1999).

    Article  CAS  Google Scholar 

  3. H. Takeuchi, T. Hirama, T. Chiba, J. Biswas and L. S. Leung, Powder Technol., 47, 195 (1986).

    Article  CAS  Google Scholar 

  4. J. Li, Y. Tung and M. Kwauk, in Circulating Fluidized Bed Technology II, P. Basu and J. F. Large Eds., Pergamon Press, New York, U.S.A., 193 (1988).

  5. H.T. Bi and L.-S. Fan, “Regime Transitions in Gas-Solid Circulating Fluidized Beds,” Paper #101e, AIChE Annual Meeting, Los Angeles, U.S.A., Nov. 17-22 (1991).

  6. P. Jiang, H. Bi, S.-C. Liang and L.-S. Fan, AIChE J., 40, 193 (1994).

    Article  CAS  Google Scholar 

  7. K. Smolders and J. Baeyens, Powder Technol., 119, 206 (2001).

    Article  Google Scholar 

  8. J.R. Grace, H. Bi and M. Golriz, in Handbook of Fluidization and Fluid-Particle Systems, W.-C. Yang Eds., Marcel Dekker, New York, U.S.A., 479 (2003).

  9. W.C. Yang, AIChE J., 21, 1013 (1975).

    Article  CAS  Google Scholar 

  10. D. Geldart, in Fluidization, J. F. Davidson, R. Clift and D. Harrison Eds., 2nd Ed., Academic Press, London, U.K., 383 (1985).

  11. M. Sciazko, J. Raczek and J. Bandrowski, Chem. Eng. Process., 24, 49 (1988).

    Article  CAS  Google Scholar 

  12. J. H. Choi, I.Y. Chang, D.W. Shun, C. K. Yi, J. E. Son and S.D. Kim, Ind. Eng. Chem. Res., 38, 2491 (1999).

    Article  CAS  Google Scholar 

  13. J. H. Choi, S.C. Ma, D.W. Shun, J. E. Son and S.D. Kim, Korean Chem. Eng. Res., 35, 300 (1997).

    CAS  Google Scholar 

  14. H.T. Bi, N. Ellis, I.A. Abba and J.R. Grace, Chem. Eng. Sci., 55, 4789 (2000).

    Article  CAS  Google Scholar 

  15. J. Werther and E.-U. Hartge, in Handbook of Fluidization and Fluid- Particle Systems, W.-C. Yang Eds., Marcel Dekker, New York, U.S.A., 111 (2003).

  16. J.D. Hazlett and M. A. Bergougnou, Powder Technol., 70, 99 (1992).

    Article  CAS  Google Scholar 

  17. C.Y. Wen and Y. H. Yu, AIChE J., 12, 610 (1966).

    Article  CAS  Google Scholar 

  18. X.X. Ma and K. Kato, Powder Technol., 95, 93 (1998).

    Article  CAS  Google Scholar 

  19. J. Li and K. Kato, Powder Technol., 118, 209 (2001).

    Article  CAS  Google Scholar 

  20. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  21. A. Haider and O. Levenspiel, Powder Technol., 58, 63 (1989).

    Article  CAS  Google Scholar 

  22. J. H. Choi, H. J. Ryu, D.W. Shun, J. E. Son and S.D. Kim, Ind. Eng. Chem. Res., 37, 1130 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, Y.S., Kim, D. & Choi, JH. Predicting the fast transition conditions by the correlation of particle entrainment rate. Korean J. Chem. Eng. 35, 812–817 (2018). https://doi.org/10.1007/s11814-017-0319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0319-3

Keywords

Navigation