Skip to main content
Log in

Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

ZnO-TiO2 sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO2 under a simulated fuel gas atmosphere was then conducted in a bench-scale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg0 removal performance were analyzed. The results showed that ZnO-TiO2 sorbents exhibited excellent Hg0 removal capacity in the presence of H2S at 150 °C and 200 °C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H2S reacting on the surface of ZnO-TiO2: (1) H2S directly reacted with ZnO to form ZnS, (2) H2S was oxidized to elemental sulfur (S ad ) by means of active oxygen on the sorbent surface, and then S ad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg0 and H2S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H2S directly reacts with ZnO, thus decreasing the S ad on the sorbent surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BP p. l. c. Statistical Review of World Energy 2013[R] (2013).

  2. J. P. Longwell, E. S. Rubin and J. Wilson, Prog. Energy Combust. Sci., 21(4), 269 (1995).

    Article  CAS  Google Scholar 

  3. J. S. Gary and C. M. Russell, Fuel Process. Technol., 71(1–3), 79 (2001).

    Google Scholar 

  4. C.-x. Hu, J.-s. Zhou, S. He, Z.-y. Luo and K.-f. Cen, Thermal Power Generation, 39, 1 (2010).

    Google Scholar 

  5. UNEP. Report of the global mercury assessment working group on the work of its first meeting[R]. Geneva: UNEP (2002).

    Google Scholar 

  6. UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases, and Environmental Transport[R]. Geneva: UNEP (2013).

    Google Scholar 

  7. E. Sasmaz and J. Wilcox, J. Phys. Chem. C 112, 16484 (2008).

    Article  CAS  Google Scholar 

  8. J.-K. Jiang, J.-m. Hao, Y. Wu, G. S. David, L. Daun and H.-z. Tian, Environ. Sci., 26, 34 (2005).

    CAS  Google Scholar 

  9. Y.-f. Duan, L. Liu, H.-j. Wang, J.-j. Yin and C.-s. Zhao, J. Taiyuan University of Technol., 41, 619 (2010).

    CAS  Google Scholar 

  10. A. Licata and W. Fey, Advanced technology to control mercury emissions[C] EPA-DOEEPRI MEGA Symposium, Arlington Heights (2001).

    Google Scholar 

  11. D. Y. Lu, D. L. Granatstein and D. J. Rose, Ind. Eng. Chem. Res., 43(17), 5400 (2004).

    Article  CAS  Google Scholar 

  12. J. Wilcox, Carbon Capture[M], Springer (2012).

    Book  Google Scholar 

  13. J. H. Pavlish, L. L. Hamre and Y. Zhuang, Fuel, 89, 838 (2010).

    Article  CAS  Google Scholar 

  14. G. J. Stiegel and R. C. Maxwell, Fuel Process. Technol., 71, 79 (2001).

    Article  CAS  Google Scholar 

  15. H. Zhang, J. Zhao, Y. Fang, J. Huang and Y. Wang, Energy Fuels, 26, 1629 (2012).

    Article  CAS  Google Scholar 

  16. Q.-c. Liu, W. Gao, C.-f. Lu and L.-y. Dong, Gas&Heat, 29, 6 (2009).

    CAS  Google Scholar 

  17. A. Suarez Negreira and J. Wilcox, Energy Fuels, 29, 369 (2014).

    Article  Google Scholar 

  18. J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal and S. A. Benson, Fuel Process. Technol., 82, 89 (2003).

    Article  CAS  Google Scholar 

  19. E. J. Granite, C. R. Myers, W. P. King, D. C. Stanko and H. W. Pennline, Ind. Eng. Chem. Res., 45, 4844 (2006).

    Article  CAS  Google Scholar 

  20. S. Aboud, E. Sasmaz and J. Wilcox, Main Group Chemistry, 7, 205 (2008).

    Article  CAS  Google Scholar 

  21. E. Sasmaz, S. Aboud and J. Wilcox, J. Phys. Chem. C, 113, 7813 (2009).

    Article  CAS  Google Scholar 

  22. D. B. Aeschliman and G. A. Norton, Environ. Sci. Technol., 33, 2278 (1999).

    Article  CAS  Google Scholar 

  23. D. J. Couling, H. V. Nguyen and W. H. Green, Fuel, 97, 783 (2012).

    Article  CAS  Google Scholar 

  24. W.-h. Hou, J.-s. Zhou, Y. Zhang, X. Gao, Z.-y. Luo and K. Cen, Proceedings of the CSEE, 33, 92 (2013).

    Google Scholar 

  25. J. Xie, N. Yan, S. Yang, Z. Qu, W. Chen, W. Zhang, K. Li, P. Liu and J. Jia, Res. Chem. Intermed., 38, 2511 (2012).

    Article  CAS  Google Scholar 

  26. J. He, G. K. Reddy, S. W. Thiel, P. G. Smirniotis and N. G. Pinto, J. Phys. Chem. C, 115, 24300 (2011).

    Article  CAS  Google Scholar 

  27. G. K. Reddy, J. He, S. W. Thiel, N. G. Pinto and P. G. Smirniotis, J. Phys. Chem. C, 119, 8634 (2015).

    Article  CAS  Google Scholar 

  28. S. Wu, M. Azharuddin and E. Sasaoka, Fuel, 85, 213 (2006).

    Article  CAS  Google Scholar 

  29. J.-S. Zhou, Q. Pan, W.-h. Hou, S.-l. You, X. Gao and Z.-y. Luo, J. Fuel Chem. Technol., 41, 1371 (2013).

    Article  CAS  Google Scholar 

  30. M. Ozaki, M. A. Uddin, E. Sasaoka and S. Wu, Fuel, 87, 3610 (2008).

    Article  CAS  Google Scholar 

  31. S. Wu, Md. A. Uddin, S. Nagano, M. Ozaki and E. Sasaoka, Energy Fuels, 25, 144 (2010).

    Article  Google Scholar 

  32. W. Liu, R. D. Vidic and T. D. Brown, Environ. Sci. Technol., 34, 154 (1999).

    Article  Google Scholar 

  33. S. He, J. Zhou, Y. Zhu, Z. Luo, M. Ni and K. Cen, Energy Fuels, 23, 253 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, K., Zhou, J., Qi, P. et al. Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury. Korean J. Chem. Eng. 34, 2383–2389 (2017). https://doi.org/10.1007/s11814-017-0154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0154-6

Keywords

Navigation