Skip to main content
Log in

The properties of silica nanoparticles with high monodispersity synthesized in the microreactor system

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new combined micromixer/microreactor/batch reactor system for the synthesis of monodisperse silica particles was demonstrated, which showed superiorities over the batch reactor. The silica nanoparticles with different sizes (ranging from 20 nm to 2 μm) and size distributions could be controllably synthesized by varying the reaction temperature and reaction time. The narrowest size distribution of the silica particles was synthesized at 60 °C. The transmission electron microscopy characterization showed that the sphericities of silica particles got better as the particle size increased. Thermal gravimetry–differential thermal analysis and Fourier transform infrared characterization indicated that the amount of ethoxy groups of silica particles decreased and the hydroxyl groups increased with the reaction time increasing. And the hydroxyl groups in silica particles increased with the reaction temperature rising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liong M, France B, Bradley KA, Zink JI (2009) Adv Mater 21:1684–1689

    Article  Google Scholar 

  2. Yagüe C, Moros M, Grazú V, Arruebo M, Santamaría J (2008) Chem Eng J 137:45–53

    Article  Google Scholar 

  3. Johnson SA, Ollivier PJ, Mallouk TE (1999) Science 283:963–965

    Article  Google Scholar 

  4. Yang H, Zhu Y (2006) Talanta 68:569–574

    Article  Google Scholar 

  5. Brinker CJ, Scherer GW (1990) Sol-Gel science: the physics and chemistry of Sol-Gel processing. Academic Press, Boston

    Google Scholar 

  6. Iler RK (1979) The chemistry of silica. John Wiley and Sons, New York

    Google Scholar 

  7. Korach Ł, Czaja K, Kovaleva NY (2008) Eur Polym J 44:889–903

    Article  Google Scholar 

  8. Wang SF, Hsu YF, Yang TCK, Chang CM, Chen Y, Huang CY, Yen FS (2005) Mater Sci Eng, A 395:148–152

    Article  Google Scholar 

  9. Liang C, Li Z, Dai S (2008) Angew Chem Int Ed 47:3696–3717

    Article  Google Scholar 

  10. Lu AH, Schüth F (2006) Adv Mater 18:1793–1805

    Article  Google Scholar 

  11. Stein A, Li F, Denny NR (2007) Chem Mater 20:649–666

    Article  Google Scholar 

  12. Stober W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  13. Park SK, Do Kim K, Kim HT (2002) Colloids Surf A197:7–17

    Article  Google Scholar 

  14. Bogush GH, Tracy MA, Zukoski CF (1988) J Non-Cryst Solids 104:95–106

    Article  Google Scholar 

  15. Lei Z, Xiao Y, Dang L, Lu M, You W (2006) Microporous Mesoporous Mater 96:127–134

    Article  Google Scholar 

  16. Lindberg R, Sjöblom J, Sundholm G (1995) Colloids Surf. A 99:79–88

    Google Scholar 

  17. Chang CH, Paul B, Remcho V, Atre S, Hutchison J (2008) J Nanopart Res 10:965–980

    Article  Google Scholar 

  18. He P, Greenway G, Haswell SJ (2011) Chem Eng J 167:694–699

    Article  Google Scholar 

  19. Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Langmuir 20:8604–8611

    Article  Google Scholar 

  20. Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J (2011) Chem Eng J 171:674–683

    Article  Google Scholar 

  21. Wacker J, Parashar VK, Gijs MAM (2009) In: Brugger J, Briand D (eds) Proceedings of the Eurosensors Xxiii conference. Elsevier, Amsterdam

    Google Scholar 

  22. Hartlen KD, Athanasopoulos APT, Kitaev V (2008) Langmuir 24:1714–1720

    Article  Google Scholar 

  23. Huang Y, Pemberton JE (2011) Colloids Surf A 377:76–86

    Article  Google Scholar 

  24. Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T (2011) J Colloid Interface Sci 360:17

    Google Scholar 

  25. Tang J, Zhou X, Zhao D, Lu GQ, Zou J, Yu C (2007) J Am Chem Soc 129:9044–9048

    Article  Google Scholar 

  26. Kuroda Y, Yamauchi Y, Kuroda K (2010) Chem Commun 46:1827–1829

    Article  Google Scholar 

  27. Huang Y, Pemberton JE (2010) Colloids Surf A 360:175–183

    Article  Google Scholar 

  28. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Langmuir 21:1516–1523

    Article  Google Scholar 

  29. Matsoukas T, Gulari E (1988) J Colloid Interface Sci 124:252–261

    Article  Google Scholar 

  30. Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142:1–18

    Article  Google Scholar 

  31. Kim KD, Kim HT (2002) J Sol-Gel Sci Technol 25:183–189

    Article  Google Scholar 

  32. Klemperer WG, Ramamurthi SD (1990) J Non-Cryst Solids 121:16–20

    Article  Google Scholar 

  33. LaMer VK, Dinegar RH (1950) J Am Chem Soc 72:4847–4854

    Article  Google Scholar 

  34. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  Google Scholar 

  35. Lee S, Cho IS, Lee JH, Kim DH, Kim DW, Kim JY, Shin H, Lee JK, Jung HS, Park NG, Kim K, Ko MJ, Hong KS (2010) Chem Mater 22:1958–1965

    Article  Google Scholar 

  36. Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T (2011) ACS Appl. Mat. Interfaces 3:1538–1544

    Article  Google Scholar 

  37. Moussaif N, Irusta S, Yaguee C, Arruebo M, Meier JG, Crespo C, Jimenez MA, Santamaria J (2010) Polymer 51:6132–6139

    Article  Google Scholar 

  38. Estella J, Echeverría JC, Laguna M, Garrido JJ (2007) J Non-Cryst Solids 353:286–294

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the National Natural Science Foundation of China (21306184) and the National High Technology Research and Development Program (863) of China (2011AA050706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjiu Su or Shudong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Su, H., Du, B. et al. The properties of silica nanoparticles with high monodispersity synthesized in the microreactor system. J Sol-Gel Sci Technol 72, 375–384 (2014). https://doi.org/10.1007/s10971-014-3445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3445-y

Keywords

Navigation