Skip to main content

Advertisement

Log in

Chelate-modified fenton treatment of sulfidic spent caustic

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Spent caustic can be treated by several treatment methods. Among the advanced techniques, Fenton reagent has many advantages. But since spent caustic contains excessive amounts of sulfide compounds, utilizing this technique in treatment of such wastewaters is not economical. The acid neutralization step, which was applied as the pretreatment process, showed an 84% COD abatement at temperature equal to 80 °C and a pH equal to 4.0. The acid neutralized wastewater was then introduced to the chelate-modified Fenton system and oxidized. Using a ratio of tartrate/Fe2+=1.1, reaction time=50min, temperature=95 °C, Fe2+=110mg/l and a ratio of H2O2/COD=1.2 in the chelate-modified Fenton system at an optimum pH value equal to 1.9, total COD abatement of the wastewater reached over 99.4%. Having tartrate added to the Fenton system, a series of photochemical reactions enhanced Fe2+ and hydroxyl radicals’ generation. This method has proved to be the recommended technique for the contamination abatement of spent caustic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Texas-Technology, What are spent caustics?, http://www.spentcaustic. com (Accessed July 2014).

    Google Scholar 

  2. M.D. LaGrega, P. L. Buckingham and J.C. Evans, Hazardous waste management, McGraw-Hill, Boston, MA (2001).

    Google Scholar 

  3. M. V. Jagushte and V. V. Mahajani, J. Chem. Technol. Biot., 74, 437 (1999).

    Article  CAS  Google Scholar 

  4. R. Alnaizy, Environ. Progress, 27, 295 (2008).

    Article  CAS  Google Scholar 

  5. I. Ben Hariz, A. Halleb, N. Adhoum and L. Monser, Sep. Purif. Technol., 107, 150 (2013).

    Article  Google Scholar 

  6. M. de Graaff, M.F. Bijmans, B. Abbas, G. J. Euverink, G. Muyzer and A. J. Janssen, Bioresour. Technol., 102, 7257 (2011).

    Article  Google Scholar 

  7. S.-H. Sheu and H.-S. Weng, Water Res., 35, 2017 (2001).

    Article  CAS  Google Scholar 

  8. A. Kolhatkar and K. Sublette, Appl. Biochem. Biotechnol., 57-58, 945 (1996).

    Article  Google Scholar 

  9. J. Sipma, A. Svitelskaya, B. van der Mark, L.W. Pol, G. Lettinga, C. J. Buisman and A. J. Janssen, Water Res., 38, 4331 (2004).

    Article  CAS  Google Scholar 

  10. Degussa-Corporation, Environmental uses of hydrogen peroxide (H 2 O 2), Allendale, New Jersey (2009).

    Google Scholar 

  11. R. Venkatadri and R.W. Peters, Hazard. Waste Hazard., 10, 107 (1993).

    Article  CAS  Google Scholar 

  12. E. Neyens and J. Baeyens, J. Hazard. Mater., 98, 33 (2003).

    Article  CAS  Google Scholar 

  13. P.C. Vandevivere, R. Bianchi and W. Verstraete, J. Chem. Technol. Biot., 72, 289 (1998).

    Article  CAS  Google Scholar 

  14. C. P. Huang, C. Dong and Z. Tang, Waste Manage., 13, 361 (1993).

    Article  CAS  Google Scholar 

  15. H. J.H. Fenton, J. Chem. Soc. Dalton, 65, 899 (1894).

    Article  CAS  Google Scholar 

  16. V. Sarria, S. Parra, M. Invernizzi, P. Peringer and C. Pulgarin, Water. Sci. Technol., 44, 93 (2001).

    CAS  Google Scholar 

  17. R. J. Knight and R.N. Sylva, J. Inorg. Nucl. Chem., 37, 779 (1975).

    Article  CAS  Google Scholar 

  18. T. E. Graedel, C. J. Weschler and M. L. Mandich, Nature, 317, 240 (1985).

    Article  CAS  Google Scholar 

  19. C. J. Weschler, M. L. Mandich and T. E. Graedel, J. Geophys. Res.-Atmos., 91, 5189 (1986).

    Article  CAS  Google Scholar 

  20. L. Wang, C. Zhang, F. Wu and N. Deng, J. Coord. Chem., 59, 803 (2006).

    Article  CAS  Google Scholar 

  21. Y. Zuo and J. Hoigne, Environ. Sci. Technol., 26, 1014 (1992).

    Article  CAS  Google Scholar 

  22. J.M. Joseph, R. Varghese and C.T. Aravindakumar, J. Photoch. Photobio. A, 146, 67 (2001).

    Article  CAS  Google Scholar 

  23. R.G. Zepp, J. Hoigne and H. Bader, Environ. Sci. Technol., 21, 443 (1987).

    Article  CAS  Google Scholar 

  24. D. Nansheng, W. Feng, L. Fan and X. Mei, Chemosphere, 36, 3101 (1998).

    Article  Google Scholar 

  25. W. Feng, D. Nansheng and Z. Yuegang, Chemosphere, 39, 2079 (1999).

    Article  Google Scholar 

  26. W. Feng and D. Nansheng, Chemosphere, 41, 1137 (2000).

    Article  CAS  Google Scholar 

  27. W.W. Eckenfelder, A.R. Bowers and J. A. Roth, Chemical oxidation—technologies for the nineties: Proceedings of the Frst International Symposium, chemical oxidation: Technology for the nineties, Vanderbilt University, Nashville, Tennessee, February 20-22, 1991, Technomic Pub. Co., Lancaster, Pa., U.S.A. (1992).

    Google Scholar 

  28. American Public Health Association, American Water Works Association., Water Pollution Control Federation. and Water Environment Federation, “Standard methods for the examination of water and wastewater: Including bottom sediments and sludges,” American Public Health Association, New York (1960).

    Google Scholar 

  29. A. Kotronarou and M.R. Hoffmann, Environ. Sci. Technol., 25, 1153 (1991).

    Article  CAS  Google Scholar 

  30. B.C. Faust and J. Hoigné, Atmos. Environ. A-Gen., 24, 79 (1990).

    Article  Google Scholar 

  31. E. Casbeer, V. K. Sharma and X.-Z. Li, Sep. Purif. Technol., 87, 1 (2012).

    Article  CAS  Google Scholar 

  32. P. Miró, A. Arques, A. M. Amat, M. L. Marin and M.A. Miranda, Appl. Catal. B-Environ., 140-141, 412 (2013).

    Article  Google Scholar 

  33. M. C. Ortega-Liébana, E. Sánchez-López, J. Hidalgo-Carrillo, A. Marinas, J.M. Marinas and F. J. Urbano, Appl. Catal. B-Environ., 127, 316 (2012).

    Article  Google Scholar 

  34. S. Rahim Pouran, A. A. Abdul Raman and W. M. A. Wan Daud, J. Clean. Prod., 64, 24 (2014).

    Article  CAS  Google Scholar 

  35. D. Hermosilla, M. Cortijo and C.P. Huang, Sci. Total Environ., 407, 3473 (2009).

    Article  CAS  Google Scholar 

  36. I. García-Fernández, M. I. Polo-López, I. Oller and P. Fernández-Ibáñez, Appl. Catal. B-Environ., 121–122, 20 (2012).

    Article  Google Scholar 

  37. P. Karaolia, I. Michael, I. García-Fernández, A. Agüera, S. Malato, P. Fernández-Ibáñez and D. Fatta-Kassinos, Sci. Total Environ., 468-469, 19 (2014).

    Article  CAS  Google Scholar 

  38. M. I. Polo-López, I. Oller and P. Fernández-Ibáñez, Catal. Today, 209, 181 (2013).

    Article  Google Scholar 

  39. A. Karci, I. Arslan-Alaton, T. Olmez-Hanci and M. Bekbölet, J. Photoch. Photobio. A, 230, 65 (2012).

    Article  CAS  Google Scholar 

  40. V. Kavitha and K. Palanivelu, Water Res., 39, 3062 (2005).

    Article  CAS  Google Scholar 

  41. B.G. Kwon, D. S. Lee, N. Kang and J. Yoon, Water Res., 33, 2110 (1999).

    Article  Google Scholar 

  42. S. Parsons, Advanced oxidation processes for water and wastewater treatment, IWA, London (2004).

    Google Scholar 

  43. V. Kavitha and K. Palanivelu, J. Photoch. Photobio. A, 170, 83 (2005).

    Article  CAS  Google Scholar 

  44. T. E. Furia, Crc handbook of food additives, CRC Press, Cleveland (1972).

    Google Scholar 

  45. X. Xue, K. Hanna, C. Despas, F. Wu and N. Deng, J. Mol. Catal. AChem., 311, 29 (2009).

    Article  CAS  Google Scholar 

  46. W. Huang, M. Brigante, F. Wu, K. Hanna and G. Mailhot, J. Photoch. Photobio. A, 239, 17 (2012).

    Article  CAS  Google Scholar 

  47. J. An, L. Zhu, Y. Zhang and H. Tang, J. Environ. Sci., 25, 1213 (2013).

    Article  CAS  Google Scholar 

  48. N. Klamerth, S. Malato, A. Agüera and A. Fernández-Alba, Water Res., 47, 833 (2013).

    Article  CAS  Google Scholar 

  49. D. Panias, M. Taxiarchou, I. Paspaliaris and A. Kontopoulos, Hydrometallurgy, 42, 257 (1996).

    Article  CAS  Google Scholar 

  50. S. Navalon, M. Alvaro and H. Garcia, Appl. Catal. B-Environ., 99, 1 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Moussavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussavi, M., Matavos-Aramyan, S. Chelate-modified fenton treatment of sulfidic spent caustic. Korean J. Chem. Eng. 33, 2384–2391 (2016). https://doi.org/10.1007/s11814-016-0080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0080-z

Keywords

Navigation