Skip to main content

Advertisement

Log in

Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We developed 3-D network carbon materials by directly pyrolyzing as-prepared polynaphthalene (PNT). The PNT-based materials were synthesized from chloromethylated naphthalene and were self-polymerized using anhydrous aluminum chloride as the Friedel-Crafts catalyst and chloromethyl methyl ether as a crosslinker. The micro-, meso-, and macroporous 3-D carbon materials showed large specific surface areas, large electrolyte-electrode interface areas, and continuous electron transport paths. MnO2/carbon composites were then synthesized by chemically depositing MnO2 onto the carbon substrate surfaces through a self-limiting redox reaction between KMnO4 solution and carbon substrates, producing high-performance pseudo-capacitor electrodes. The unique electrode architecture demonstrated high capacitance up to 286.8 F g-1, and good cycling stability up to 1000 cycles without losing its capacitance. The electrode shows potential applications for the development of high-performance supercapacitors for a variety of power-demanding devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).

    Article  CAS  Google Scholar 

  2. P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden and R. Carter, Energy Environ. Sci., 3, 1238 (2010).

    Article  CAS  Google Scholar 

  3. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wang and M. Liu, Nano Lett., 12, 321 (2011).

    Article  Google Scholar 

  4. M.-K. Song, S. Cheng, H. Chen, W. Qin, K.-W. Nam, S. Xu, X.-Q. Yang, A. Bongiorno, J. Lee and J. Bai. Nano Lett., 12, 3483 (2012).

    Article  CAS  Google Scholar 

  5. J. Y. Kim, S.-H. Lee, Y. Yan, J. Oh and K. Zhu, RSC Adv., 2, 8281 (2012).

    Article  CAS  Google Scholar 

  6. V. Aravindan, Y. L. Cheah, W. F. Mak, G. Wee, B. V. R. Chowdari and S. Madhavi, ChemPlusChem, 77, 570 (2012).

    Article  CAS  Google Scholar 

  7. H.-C. Chien, W.-Y. Cheng, Y.-H. Wang and S.-Y. Lu, Adv. Funct. Mater., 22, 5038 (2012).

    Article  CAS  Google Scholar 

  8. Y. Wang, Z. Hong, M. Wei and Y. Xia, Adv. Funct. Mater., 22, 5185 (2012).

    Article  CAS  Google Scholar 

  9. K. Liang, X. Tang and W. Hu, J. Mater. Chem., 22, 11062 (2012).

    Article  CAS  Google Scholar 

  10. M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, Nanoscale, 5, 72 (2013).

    Article  CAS  Google Scholar 

  11. A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon and W. Van Schalkwijk, Nat. Mater., 4, 366 (2005).

    Article  Google Scholar 

  12. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. B. Zhao and H. J. Fan, ACS Nano, 6, 5531 (2012).

    Article  CAS  Google Scholar 

  13. A. L. M. Reddy, S. R. Gowda, M. M. Shaijumon and P. M. Ajayan, Adv. Mater., 24, 5045 (2012).

    Article  CAS  Google Scholar 

  14. W.-S. Kim, Y. Hwa, J.-H. Shin, M. Yang, H.-J. Sohn and S.-H. Hong, Nanoscale, 6, 4297 (2014).

    Article  CAS  Google Scholar 

  15. C. Yuan, L. Zhang, L. Hou, G. Pang and W.-C. Oh, RSC Adv., 4, 14408 (2014).

    Article  CAS  Google Scholar 

  16. A. Ehsani, B. Jaleh and M. Nasrollabzadeh, J. Power Sources, 257, 300 (2014).

    Article  CAS  Google Scholar 

  17. A. Bordes, K. S. Eom and T. F. Fuller, J. Power Sources, 257, 163 (2014).

    Article  CAS  Google Scholar 

  18. Z. Qian, T. Peng, L. Qu, J. Wang and P. Wang, J. Mater. Chem. A, 2, 4894 (2014).

    Article  CAS  Google Scholar 

  19. L. Wang, C. Lin, F. Zhang and J. Jin, ACS Nano, 8, 3724 (2014).

    Article  CAS  Google Scholar 

  20. Y. Peng, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, H. Geng and Y. Lu, Nano Res., 4, 216 (2011).

    Article  CAS  Google Scholar 

  21. A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud and J. W. Long, Nao Lett., 7, 281 (2007).

    Article  CAS  Google Scholar 

  22. W.-H. Qu, F. Han, A.-H. Lu, C. Xing, M. Qiao and W.-C. Li, J. Mater. Chem. A, 2, 6549 (2014).

    Article  CAS  Google Scholar 

  23. A. Gambou-Bosca and D. Bélanger, J. Mater. Chem. A, 2, 6463 (2014).

    Article  CAS  Google Scholar 

  24. S. Cheng, L. Yang, Y. Lin, W. Lin, L. Huang, D. Chen, C. P. Wong and M. Liu, J. Mater. Chem. A, 1, 7709 (2013).

    Article  CAS  Google Scholar 

  25. M. Minakshi, D. Meyrick and D. Appadoo, Energy Fuels, 27, 3516 (2013).

    Article  CAS  Google Scholar 

  26. H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B. C. Olsen, C. M. B. Holt and D. Mitlin, Nano Lett., 14, 1987 (2014).

    Article  CAS  Google Scholar 

  27. Q. H. Do, J. Smithyman, C. Zeng, C. Zhang, R. Liang and J. P. Zheng, J. Power Sources, 248, 1241 (2014).

    Article  CAS  Google Scholar 

  28. S.-B. Yoon and K.-B. Kim, Electrochim. Acta, 106, 135 (2013).

    Article  CAS  Google Scholar 

  29. W. Wei, X. Cui, W. Chen and D. G. Ivey, Chem. Soc. Rev., 50, 1697 (2011).

    Article  Google Scholar 

  30. Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen and S. Suib, J. Am. Chem. Soc., 136, 11452 (2014).

    Article  CAS  Google Scholar 

  31. X. Zhang, Q. Jin, L. Dai and S. Yuan, Bull. Mater. Sci., 34, 735 (2011).

    Article  CAS  Google Scholar 

  32. M. Wu, G. A. Snook, G. Z. Chen and D. Fray, J. Electrochem. Commun., 6, 499 (2004).

    Article  CAS  Google Scholar 

  33. M. Kim, Y. Hwang, K. Min and J. Kim, Phys. Chem. Chem. Phys., 15, 15602 (2013).

    Article  CAS  Google Scholar 

  34. X. H. Huang, S. Kim, M. S. Heo, J. E. Kim, H. Suh and I. Kim, Langmuir, 29, 12266 (2013).

    Article  CAS  Google Scholar 

  35. J. H. Bae, J.-H. Han and T. D. Chung, Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys. Chem. Chem. Phys., 14, 448 (2012).

    Article  CAS  Google Scholar 

  36. E. Raymundo-Piñero, K. Kierzek, J. Machnikowski and F. Béguin, Carbon, 44, 2498 (2006).

    Article  Google Scholar 

  37. G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota and E. Frackowiak, Electrochim. Acta, 50, 1197 (2005).

    Article  CAS  Google Scholar 

  38. V. V. Vol’khin, O. A. Pogodina and G. V. Leont’eva, Russ. J. Gen. Chem., 72, 173 (2002).

    Article  Google Scholar 

  39. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X, Cui, Y. Cui and Z. Bao, Nano Lett., 11, 2905 (2011).

    Article  CAS  Google Scholar 

  40. M. Kim, Y. Hwang and J. Kim, J. Power Sources, 239, 225 (2013).

    Article  CAS  Google Scholar 

  41. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L.-C. Qin, Carbon, 49, 2917 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Kim, M., Suh, H. et al. Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors. Korean J. Chem. Eng. 33, 2228–2234 (2016). https://doi.org/10.1007/s11814-016-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0036-3

Keywords

Navigation