Skip to main content

Advertisement

Log in

Artificial neural networks as classification and diagnostic tools for lymph node-negative breast cancers

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Artificial neural networks (ANNs) can be used to develop a technique to classify lymph node negative breast cancer that is prone to distant metastases based on gene expression signatures. The neural network used is a multilayered feed forward network that employs back propagation algorithm. Once trained with DNA microarray-based gene expression profiles of genes that were predictive of distant metastasis recurrence of lymph node negative breast cancer, the ANNs became capable of correctly classifying all samples and recognizing the genes most appropriate to the classification. To test the ability of the trained ANN models in recognizing lymph node negative breast cancer, we analyzed additional idle samples that were not used beforehand for the training procedure and obtained the correctly classified result in the validation set. For more substantial result, bootstrapping of training and testing dataset was performed as external validation. This study illustrates the potential application of ANN for breast tumor diagnosis and the identification of candidate targets in patients for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, J. G. M. Klijn, Y. Zhang and A. M. Sieuwerts, Lancet., 365, 671 (2005).

    Article  CAS  Google Scholar 

  2. Ch. Venkateswarlu, K. Kiran and J. S. Eswari, Appl. Artif. Intell., 26, 903 (2012).

    Article  Google Scholar 

  3. J. S. Eswari, M. Anand and Ch. Venkateswarlu, J. Chem. Technol. Biotechnol., 88, 271 (2013).

    Article  CAS  Google Scholar 

  4. J. S. Eswari and Ch. Venkateswarlu, Int. J. Pharm., 4, 465 (2012).

    Google Scholar 

  5. J. S. Eswari and Ch. Venkateswarlu, Chem. Eng. Commun., In Press (2015).

    Google Scholar 

  6. J. S. Eswari and Ch. Venkateswarlu, Environ. Eng. Sci., 30, 527 (2013).

    Article  Google Scholar 

  7. Y. S. Kim, S. J. Hwang, J. M. Oh, G. D. Whang and C. K. Yoo, Korean J. Chem. Eng., 26, 969 (2010).

    Article  Google Scholar 

  8. N. Banerjee and J. Park, Korean J. Chem. Eng., 32, 1207 (2015).

    Article  CAS  Google Scholar 

  9. Z. İlbay, S. Şahin and K. Büyükkabasakal, Korean J. Chem. Eng., 31, 1661 (2014).

    Article  Google Scholar 

  10. B. Zarenezhad and A. Aminian, Korean J. Chem. Eng., 28, 1286 (2011).

    Article  CAS  Google Scholar 

  11. M. Molashahi and H. Hashemipour, Korean. J. Chem. Eng., 29, 601 (2012).

    Article  CAS  Google Scholar 

  12. J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi and F. Westermann, Nat. Med., 7, 673 (2001).

    Article  CAS  Google Scholar 

  13. Y. T. Chang, C. S. Huang, C. T. Yao and S. L. Su, World J. Gastroenterol., 20, 14463 (2014).

    Article  Google Scholar 

  14. Y. T. Chang, C. T. Yao, S. L. Su and Y. C. Chou, World J. Gastroenterol., 20, 17476 (2014).

    Article  Google Scholar 

  15. C. Lin, C. M. Chu, J. Lin, H. Y. Yang and S. L. Su, PLOS One., 10 (2015).

  16. C. M. Chu, C. J. Chen, D. C. Chan and H. S. Wu, World J. Surg. Oncol., 12, 80 (2014).

    Article  Google Scholar 

  17. C. H. Lai, N. F. Chu, C. W. Chang and S. L. Wang, PLOS One., 8, 12 (2013).

    Google Scholar 

  18. L. J. Van’t Veer, H. Dai, M. J. Van de Vijver and Y. D. He, Nature., 415, 530 (2002).

    Article  Google Scholar 

  19. A. B. Dor, L. Bruhn, N. Friedman and I. Nachman, J. Comp. Biol., 7, 559 (2000).

    Article  Google Scholar 

  20. S. Ramaswamy, K. N. Ross, E. S. Lander and T. R. Golub, Nat. Genet., 33, 49 (2003).

    Article  CAS  Google Scholar 

  21. F. Amato, A. López, E. M. Peña-Méndez and P. Vaňhara, J. Appl. Biomed., 11, 47 (2013).

    Article  CAS  Google Scholar 

  22. H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee and T. Ideker, Mol. Syst. Biol., 3, 140 (2007).

    Article  Google Scholar 

  23. L. E. Peterson, M. Ozen, H. Erdem, A. Amini, L. Gomez and C. C. Nelson, IEEE, 1 (2005).

  24. P. J. G. Lisboa, Neural Netw., 15, 11 (2002).

    Article  CAS  Google Scholar 

  25. H. T. Siegelmann and E. D. Sontag, Appl. Math. Lett., 4, 77 (1991).

    Article  Google Scholar 

  26. J. L. Balcazar, IEEE, 7141, 14 (1993).

    Google Scholar 

  27. H. L. Chou, C. T. Yao, S. L. Su and C. Y. Lee, BMC Bioinfo., 14, 100 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Eswari J..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eswari J., S., Chandrakar, N. Artificial neural networks as classification and diagnostic tools for lymph node-negative breast cancers. Korean J. Chem. Eng. 33, 1318–1324 (2016). https://doi.org/10.1007/s11814-015-0255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0255-z

Keywords

Navigation