Skip to main content

Advertisement

Log in

Sulfonated poly(phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To develop a novel and low-cost membrane as a separator of vanadium redox flow battery, sulfonated poly(phthalazinone ether sulfone) (SPPES) was prepared by sulfonating PPES with fuming sulfuric acid. By testing the sulfonation degree, intrinsic viscosity, and solubility of SPPES, the results showed that sulfonated polymers had higher intrinsic viscosities and excellent solubility in most polar solvents. IR analysis revealed that the –SO3H group was successfully attached to SPPES backbone. DSC and TG results showed that SPPES exhibited higher T g than that of PPES, and T d at the first weight loss of SPPES was about 300 °C. The SPPES membrane (SP-02) showed a dramatic reduction in crossover of vanadium ions across the membrane compared with that of the Nafion membrane. Cell tests identified that VRB with the SPPES membrane exhibited a lower self-discharge rate, higher coulombic efficiency (92.82%), and higher energy efficiency (67.58%) compared with the Nafion system. Furthermore, cycling tests indicated that the single cell with SPPES membrane exhibited a stable performance during 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sum E, Rychcik M, Skyllas-kazacos M (1985) Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J Power Sources 16(2):85–95

    Article  CAS  Google Scholar 

  2. Sum E, Skyllas-Kazacos M (1985) A study of the V(II)/V(III) redox couple for redox flow cell applications. J Power Sources 15(2–3):179–190

    Article  CAS  Google Scholar 

  3. Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134(12):2950–2953

    Article  CAS  Google Scholar 

  4. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc 133(5):1057–1058

    Article  CAS  Google Scholar 

  5. Mohammadi T, Skyllas-Kazacos M (1995) Preparation of sulfonated composite membrane for vanadium redox flow battery applications. J Membr Sci 107(1–2):35–45

    Article  CAS  Google Scholar 

  6. Hwang G-J, Ohya H (1997) Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. J Membr Sci 132(1):55–61

    Article  CAS  Google Scholar 

  7. Skyllas-Kazacos M, Kasherman D, Hong DR, Kazacos M (1991) Characteristics and performance of 1 kW UNSW vanadium redox battery. J Power Sources 35(4):399–404

    Article  CAS  Google Scholar 

  8. Mohammadi T, Chieng SC, Skyllas Kazacos M (1997) Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. J Membr Sci 133(2):151–159

    Article  CAS  Google Scholar 

  9. Gu S, He G, Wu X, Li C, Liu H, Lin C, Li X (2006) Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC). J Membr Sci 281(1–2):121–129

    Article  CAS  Google Scholar 

  10. Gardner KH, Hsiao BS, Faron KL (1994) Polymorphism in poly(aryl ether ketone)s. Polymer 35(11):2290–2295

    Article  CAS  Google Scholar 

  11. Rose JB (1974) Preparation and properties of poly(arylene ether sulphones). Polymer 15(7):456–465

    Article  CAS  Google Scholar 

  12. Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34(6):561–580

    Article  CAS  Google Scholar 

  13. Wang N, Huang K, Wang L (2011) Synthesis and characterization of poly(arylene ether ketone)s containing triazole units through click chemistry. Polym Bull 67(8):1569–1581

    Article  CAS  Google Scholar 

  14. Chen D, Wang S, Xiao M, Meng Y (2010) Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application. J Power Sources 195(7):2089–2095

    Article  CAS  Google Scholar 

  15. Chen D, Wang S, Xiao M, Han D, Meng Y (2010) Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery. J Power Sources 195(22):7701–7708

    Article  CAS  Google Scholar 

  16. Chen D, Wang S, Xiao M, Meng Y (2010) Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery. Energy Conversion Manag 51(12):2816–2824

    Article  CAS  Google Scholar 

  17. Chen D, Wang S, Xiao M, Meng Y (2010) Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications. Energy Environ Sci 3(5):622–628

    Article  CAS  Google Scholar 

  18. Jian XG, Meng YZ, Zheng HB, Allan SH (1993) Poly(phthalazinone ether sulfone)s and their preparation method. Chinese Patent 93109180.2

  19. Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenko SD, Wang K, Kaliaguine S (2003) Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. J Membr Sci 227(1–2):39–50

    Article  CAS  Google Scholar 

  20. Jian XG, Zhang HH, Yang Dl, Wang JY, Liu C, Han RL (2009) Ultrafiltration membranes of poly(phthalazinone ether sulfone)s and their preparation method. Chinese Patent 200910220545.2

  21. Jian XG, Zhan SH, Yang Dl, Wang jY, Liu C (2009) Ultrafiltration membranes of sulfonated poly(phthalazinone ether sulfone)s and their preparation method. Chinese Patent 200910220544.8

  22. Damay F, Klein LC (2003) Transport properties of Nafion(TM) composite membranes for proton-exchange membranes fuel cells. Solid State Ionics 162–163:261–267

    Article  Google Scholar 

  23. Sukkar T, Skyllas-Kazacos M (2004) Membrane stability studies for vanadium redox cell applications. J Appl Electrochem 34:137–145

    Article  CAS  Google Scholar 

  24. Mai Z, Zhang H, Li X, Bi C, Dai H (2011) Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. J Power Sources 196(1):482–487

    Article  CAS  Google Scholar 

  25. Hwang G-J, Ohya H (1996) Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. J Membr Sci 120(1):55–67

    Article  CAS  Google Scholar 

  26. Sang S, Wu Q, Huang K (2007) Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation. J Membr Sci 305(1–2):118–124

    Article  CAS  Google Scholar 

  27. Xi J, Wu Z, Teng X, Zhao Y, Chen L, Qiu X (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18(11):1232–1238

    Article  CAS  Google Scholar 

  28. Qiu JY, Zhao L, Zhai ML, Ni JF, Zhou HH, Peng J, Li JQ, Wei GS (2008) Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. J Power Sources 177(2):617–623

    Article  CAS  Google Scholar 

  29. Xi JY, Wu ZH, Qiu XP, Chen LQ (2007) Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources 166(2):531–536

    Article  CAS  Google Scholar 

  30. Qiu J, Zhang J, Chen J, Peng J, Xu L, Zhai M, Li J, Wei G (2009) Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications. J Membr Sci 334(1–2):9–15

    Article  CAS  Google Scholar 

  31. Gao Y, Robertson GP, Guiver MD, Jian X (2003) Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J Polymer Sci Polymer Chem 41(4):497–507

    CAS  Google Scholar 

  32. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39

    Article  CAS  Google Scholar 

  33. Yang B, Manthiram A (2006) Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells. J Power Sources 153(1):29–35

    Article  CAS  Google Scholar 

  34. Luo QT, Zhang HM, Chen J, You DJ, Sun CX, Zhang Y (2008) Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J Membr Sci 325(2):553–558

    Article  CAS  Google Scholar 

  35. Ma C, Zhang L, Mukerjee S, Ofer D, Nair B (2003) An investigation of proton conduction in select PEM's and reaction layer interfaces-designed for elevated temperature operation. J Membr Sci 219(1–2):123–136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Basic Research Program of China (973 Program no. 2010CB227201) and the National Natural Science Foundation of China (no. 51072234) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suqin Liu or Younian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Peng, S., Li, Y. et al. Sulfonated poly(phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery. J Solid State Electrochem 16, 2169–2177 (2012). https://doi.org/10.1007/s10008-012-1641-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1641-7

Keywords

Navigation