Skip to main content
Log in

The Mechanisms and Applications of Quorum Sensing (QS) and Quorum Quenching (QQ)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Quorum sensing (QS) is a regulatory system that regulates the behavior of microbial populations by sensing the concentration of signal molecules that are spontaneously produced and released by bacteria. The strategy of blocking the QS system and inhibiting the production of virulence factors is termed as quorum quenching (QQ). This strategy attenuates virulence without killing the pathogens, thereby weakening the selective pressure on pathogens and postponing the evolution of QQ-mediated drug resistance. In recent years, there have been significant theoretical and practical developments in the field of QS and QQ. In particular, with the development and utilization of marine resources, more and more marine microbial species have been found to be regulated by these two mechanisms, further promoting the research progress of QS and QQ. In this review, we described the diversity of QS signals and QS-related regulatory systems, and then introduced mechanisms related to QS interference, with particular emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Finally, the exploitation of quorum sensing quenchers and the practical application of QQ were introduced, while some QQ strategies were proposed as promising tools in different fields such as medicine, aquaculture, agriculture and biological pollution prevention areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, N. A., Harwood, C. S., Schaefer, A. L., Giraud, E., and Greenberg, E. P., 2011. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proceedings of the National Academy of Sciences of the United States of America, 108: 7183–7188, DOI: https://doi.org/10.1073/pnas.1103821108.

    Article  Google Scholar 

  • Albuquerque, P., and Casadevall, A., 2012. Quorum sensing in fungi-A review. Medical Mycology, 50: 337–345, DOI: https://doi.org/10.3109/13693786.2011.652201.

    Article  Google Scholar 

  • Amaya, S., Pereira, J. A., Borkosky, S. A., Valdez, J. C., Bardón, A., and Arena, M. E., 2012. Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine, 19: 1173–1177, DOI: https://doi.org/10.1016/j.phymed.2012.07.003.

    Article  Google Scholar 

  • Bauer, W. D., and Robinson, J. B., 2002. Disruption of bacterial quorum sensing by other organisms. Current Opinion in Biotechnology, 13: 234–237, DOI: https://doi.org/10.1016/S0958-1669(02)00310-5.

    Article  Google Scholar 

  • Biswa, P., and Doble, M., 2013. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 343: 34–41.

    Article  Google Scholar 

  • Borthwick, A. D., 2012. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chemical Reviews, 112: 3641–3716, DOI: https://doi.org/10.1021/cr200398y.

    Article  Google Scholar 

  • Brachmann, A. O., Brameyer, S., Kresovic, K., Hitkova, I., Kopp, Y., Manske, C., Schubert, C., Bode, H. B., and Heermann, R., 2013. Pyrones as bacterial signaling molecules. Nature Chemical Biology, 9: 573–578.

    Article  Google Scholar 

  • Brackman, G., Celen, S., Hillaert, U., Calenbergh, S. V., Cos, P., Maes, L., Nelis, H. J., and Coenye, T., 2011. Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One, 6: e16084.

    Article  Google Scholar 

  • Brameyer, S., Kresovic, D., Bode, H. B., and Heermann, R., 2015. Dialkylresorcinols as bacterial signaling molecules. Proceedings of the National Academy of Sciences of the United States of America, 112: 572–577.

    Article  Google Scholar 

  • Bzdrenga, J., Daude, D., Remy, B., Jacquet, P., Plener, L., Elias, M., and Chabriere, E., 2017. Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 267: 104–115, DOI: https://doi.org/10.1016/j.cbi.2016.05.028.

    Article  Google Scholar 

  • Cao, H., Yang, M., Zheng, H., Zhang, J., Zhong, Z., and Zhu, J., 2009. Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Archives of Microbiology, 191: 283–289, DOI: https://doi.org/10.1007/s00203-008-0454-7.

    Article  Google Scholar 

  • Chen, G., Swem, L. R., Swem, D. L., Stauff, D. L., O’Loughlin, C. T., Jeffrey, P. D., Bassler, B. L., and Hughson, F. M., 2011. A strategy for antagonizing quorum sensing. Molecular Cell, 42: 199–209.

    Article  Google Scholar 

  • Chu, W., Zhou, S., Zhu, W., and Zhuang, X., 2014. Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Scientific Reports, 4: 5446, DOI: https://doi.org/10.1038/srep05446.

    Article  Google Scholar 

  • Daneshvar Alavi, H. E., and Truelstrup Hansen, L., 2013. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling, 29: 1253–1268, DOI: https://doi.org/10.1080/08927014.2013.835805.

    Article  Google Scholar 

  • De Lamo Marin, S., Xu, Y., Meijler, M. M., and Janda, K. D., 2007. Antibody catalyzed hydrolysis of a quorum sensing signal found in gram-negative bacteria. Bioorganic & Medicinal Chemistry Letters, 17: 1549–1552, DOI: https://doi.org/10.1016/j.bmcl.2006.12.118.

    Article  Google Scholar 

  • Defoirdt, T., 2018. Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26: 313–328, DOI: https://doi.org/10.1016/j.tim.2017.10.005.

    Article  Google Scholar 

  • Defoirdt, T., Boon, N., Bossier, P., and Verstraete, W., 2004. Disruption of bacterial quorum sensing: An unexplored strategy to fight infections in aquaculture. Aquaculture, 240: 69–88.

    Article  Google Scholar 

  • Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., and Bossier, P., 2008. Quorum sensing and quorum quenching in Vibrio harveyi: Lessons learned from in vivo work. The ISME Journal, 2: 19–26.

    Article  Google Scholar 

  • Defoirdt, T., Miyamoto, C. M., Wood, T. K., Meighen, E. A., Sorgeloos, P., Verstraete, W., and Bossier, P., 2007. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2 (5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein LuxR. Environmental Microbiology, 9: 2486–2495.

    Article  Google Scholar 

  • Diggle, S. P., Cornelis, P., Williams, P., and Cámara, M., 2006. 4-Quinolone signalling in Pseudomonas aeruginosa: Old molecules, new perspectives. International Journal of Medical Microbiology, 296: 83–91.

    Article  Google Scholar 

  • Dobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P., and Paul, V. J., 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling, 27: 893–905.

    Article  Google Scholar 

  • Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., and Zhang, L. H., 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411: 813–817.

    Article  Google Scholar 

  • Dong, Y. H., Xu, J. L., Li, X. Z., and Zhang, L. H., 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorumsensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of America, 97: 3526–3531, DOI: https://doi.org/10.1073/pnas.060023897.

    Article  Google Scholar 

  • Fong, J., Zhang, C., Yang, R., Boo, Z. Z., Tan, S. K., Nielsen, T. E., Givskov, M., Liu, X. W., Bin, W., Su, H., and Yang, L., 2018. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of Pseudomonas aeruginosa. Scientific Reports, 8: 1155.

    Article  Google Scholar 

  • Fuchs, S. W., Bozhüyük, K. A., Kresovic, D., Grundmann, F., Dill, V., Brachmann, A. O., Waterfield, N. R., and Bode, H. B., 2013. Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occurring ketosynthase. Angewandte Chemie, International Edition in English, 52: 4108–4112, DOI: https://doi.org/10.1002/anie.201210116.

    Article  Google Scholar 

  • Ganin, H., Rayo, J., Amara, N., Levy, N., Krief, P., and Meijler, M. M., 2013. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. MedChemComm, 4: 175–179.

    Article  Google Scholar 

  • García, M. P., D’Alvise, P., and Gram, L., 2013. Disruption of cell-to-cell signaling does not abolish the antagonism of Phaeobacter gallaeciensis toward the fish pathogen Vibrio anguillarum in algal systems. Applied and Environmental Microbiology, 79: 5414–5417.

    Article  Google Scholar 

  • Giacometti, A., Cirioni, O., Ghiselli, R., Dell’Acqua, G., Orlando, F., D’Amato, G., Mocchegiani, F., Silvestri, C., DelPrete, S. M., Rocchi, M., Balaban, N., Saba, V., and Scalise, G., 2005. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of Staphylococcal sepsis. Peptides, 26: 169–175, DOI: https://doi.org/10.1016/j.peptides.2004.09.018.

    Article  Google Scholar 

  • Guo, X., Zhang, L. Y., Wu, S. C., Xia, F., Fu, Y. X., Wu, Y. L., Leng, C. Q., Yi, P. F., Shen, H. Q., Wei, X. B., and Fu, B. D., 2014. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli. Veterinary Microbiology, 174: 496–503, DOI: https://doi.org/10.1016/j.vetmic.2014.09.021.

    Article  Google Scholar 

  • Han, Y., Hou, S., Simon, K. A., Ren, D., and Luk, Y-Y., 2008. Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorganic & Medicinal Chemistry Letters, 18: 1006–1010.

    Article  Google Scholar 

  • Harms, A., Maisonneuve, E., and Gerdes, K., 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 354: f4268, DOI: https://doi.org/10.1126/science.aaf4268.

    Article  Google Scholar 

  • Hmelo, L. R., 2017. Quorum sensing in marine microbial environments. Annual Review of Marine Science, 9: 257–281.

    Article  Google Scholar 

  • Hume, E., Baveja, J., Muir, B., Schubert, T. L., Kumar, N., Kjelleberg, S., Griesser, H. J., Thissen, H., Read, R., Poole-Warren, L. A., Schindhelm, K., and Willcox, M., 2004. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials, 25: 5023–5030.

    Article  Google Scholar 

  • Jakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., Skindersoe, M., Larsen, T. O., Høiby, N., Bjarnsholt, T., and Givskov, M., 2012. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78: 2410–242

    Article  Google Scholar 

  • Jatt, A. N., Tang, K., Liu, J., Zhang, Z., and Zhang, X-H., 2015. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiology Ecology, 91: 1–13.

    Article  Google Scholar 

  • Jones, M. B., Jani, R., Ren, D., Wood, T. K., and Blaser, M. J., 2005. Inhibition of Bacillus anthracis growth and virulence-gene expression by inhibitors of quorum-sensing. The Journal of Infectious Diseases, 191: 1881–1888.

    Article  Google Scholar 

  • Jones, S. M., Dang, T. T., and Martinuzzi, R., 2009. Use of quorum sensing antagonists to deter the formation of crystalline Proteus mirabilis biofilms. International Journal of Antimicrobial Agents, 34: 360–364.

    Article  Google Scholar 

  • Kügler, S., Sebghati, T. S., Eissenberg, L. G., and Goldman, W. E., 2000. Phenotypic variation and intracellular parasitism by Histoplasma Capsulatum. Proceedings of the National Academy of Sciences of the United States of America, 97: 8794–8798, DOI: https://doi.org/10.1073/pnas.97.16.8794.

    Article  Google Scholar 

  • Kalaiarasan, E., Kottha, T., Harish, B. N., Gnanasambandam, V., Sali, V. K., and John, J., 2017. Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors. Microbial Pathogenesis, 111: 99–107.

    Article  Google Scholar 

  • Kaufmann, G. F., Sartorio, R., Lee, S. H., Mee, J. M., Altobell, L. J., Kujawa, D. P., Jeffries, E., Clapham, B., Meijler, M. M., and Janda, K. D., 2006. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. Journal or the American Chemical Society, 128: 2802–2803, DOI: https://doi.org/10.1021/ja0578698.

    Article  Google Scholar 

  • Kelly, R. C., Bolitho, M. B., Higgins, D. A., Lu, W., Ng, W. L., Jeffrey, P. D., Rabinowitz, J. D., Semmelhack, M. F., Hughson, F. M., and Bassler, B. L., 2009. The Vibrio cholerae quorum-sensing autoinducer CAI-1: Analysis of the biosynthetic enzyme CqsA. Nature Chemical Biology, 5: 891–895, DOI: https://doi.org/10.1038/nchembio.237.

    Article  Google Scholar 

  • Kim, J. S., Kim, Y. H., Seo, Y. W., and Park, S., 2007. Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnology and Bioprocess Engineering, 12: 308.

    Article  Google Scholar 

  • Kiran, M. D., Adikesavan, N. V., Cirioni, O., Giacometti, A., Silvestri, C., Scalise, G., Ghiselli, R., Saba, V., Orlando, F., Shoham, M., and Balaban, N., 2008. Discovery of a quorum-sensing inhibitor of drug-resistant Staphylococcal infections by structure-based virtual screening. Molecular Pharmacology, 73: 1578–1586, DOI: https://doi.org/10.1124/mol.107.044164.

    Article  Google Scholar 

  • Kleerebezem, M., Quadri, L. E., Kuipers, O. P., and De Vos, W. M., 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Molecular Microbiology, 24: 895–904.

    Article  Google Scholar 

  • Kravchenko, V. V., Kaufmann, G. F., Mathison, J. C., Scott, D. A., Katz, A. Z., and Grauer, D. C., 2008. Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Science, 321: 259–263, DOI: https://doi.org/10.1126/science.1156499.

    Article  Google Scholar 

  • Kwan, J. C., Meickle, T., Ladwa, D., Teplitski, M., Paul, V., and Luesch, H., 2011. Lyngbyoic acid, a ‘tagged’ fatty acid from a marine Cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Molecular BioSystems, 7: 1205–1216.

    Article  Google Scholar 

  • LaSarre, B., and Federle, M. J., 2013. Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews, 77: 73–111.

    Article  Google Scholar 

  • Leadbetter, J. R., and Greenberg, E. P., 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. Journal of Bacteriology, 182: 6921–6926.

    Article  Google Scholar 

  • Lebeer, S., De Keersmaecker, S. C., Verhoeven, T. L., Fadda, A. A., Marchal, K., and Vanderleyden, J., 2007. Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. Journal of Bacteriology, 189: 860–871.

    Article  Google Scholar 

  • Lee, B., Yeon, K. M., Shim, J., Kim, S. R., Lee, C. H., Lee, J., and Kim, J., 2014. Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. Biomacromolecules, 15: 1153–1159.

    Article  Google Scholar 

  • Lee, H., Chang, C. Y., Nardone, G., and Kwon-Chung, K. J., 2007. TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Molecular Microbiology, 64: 591–601, DOI: https://doi.org/10.1111/j.1365-2958.2007.05666.x.

    Article  Google Scholar 

  • Lee, J. H., Wood, T. K., and Lee, J., 2015. Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 23: 707–718.

    Article  Google Scholar 

  • Lindemann, A., Pessi, G., Schaefer, A. L., Mattmann, M. E., Christensen, Q. H., Kessler, A., Hennecke, H., Blackwell, H. E., Greenberg, E. P., and Harwood, C. S., 2011. Isovalerylhomoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences of the United States of America, 108: 16765–16770, DOI: https://doi.org/10.1073/pnas.1114125108.

    Article  Google Scholar 

  • Manefield, M., Rasmussen, T. B., Henzter, M., Andersen, J. B., Steinberg, P., Kjelleberg, S., and Givskov, M., 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 148: 1119–1127.

    Article  Google Scholar 

  • Mansson, M., Nielsen, A., Kjœrulff, L., Gotfredsen, C. H., Wietz, M., Ingmer, H., Gram, L., and Larsen, T. O., 2011. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Marine Drugs, 9: 2537–2552.

    Article  Google Scholar 

  • Martins, M. B., and Carvalho, I., 2007. Diketopiperazines: Biological activity and synthesis. Tetrahedron, 63: 9923–9932, DOI: https://doi.org/10.1016/j.tet.2007.04.105.

    Article  Google Scholar 

  • Moreira, C. G., and Sperandio, V., 2010. The Epinephrine/Norepinephrine/Autoinducer-3 interkingdom signaling system in Escherichia coli O157:H7. Advances in Experimental Medicine & Biology, 874: 213–227, DOI: https://doi.org/10.1007/978-1-4419-5576-0_12.

    Google Scholar 

  • Murzyn, A., Krasowska, A., Stefanowicz, P., Dziadkowiec, D., and Lukaszewicz, M., 2010. Capric acid secreted by Saccharomyces boulardii inhibits Cancida albicans filamentous growth, adhesion and biofilm formation. PLoS One, 5: e12050, DOI: https://doi.org/10.1371/journal.pone.0012050.

    Article  Google Scholar 

  • Nealson, K. H., and Hastings, J. W., 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiological Reviews, 43: 496–518.

    Google Scholar 

  • Newman, K. L., Chatterjee, S., Ho, K. A., and Lindow, S. E., 2008. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Molecular Plant-Microbe Interactions, 21: 326–334.

    Article  Google Scholar 

  • Ng, W. L., and Bassler, B. L., 2009. Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43: 197–222.

    Article  Google Scholar 

  • Stoodley, P., Sauer, K., Davies, D. G., and Costerton, J. W., 2002. Biofilms as complex differentiated communities. Annual Review of Microbiology, 56: 187–209, DOI: https://doi.org/10.1146/annurev.micro.56.012302.160705.

    Article  Google Scholar 

  • Packiavathy, I. A. S. V., Priya, S., Pandian, S. K., and Ravi, A. V., 2014. Inhibition of biofilm development of uropathogens by curcumin-An anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148: 453–460.

    Article  Google Scholar 

  • Padder, S. A., Prasad, R., and Shah, A. H., 2018. Quorum sensing: A less known mode of communication among fungi. Microbiological Research, 210: 51–58, DOI: https://doi.org/10.1016/j.micres.2018.03.007.

    Article  Google Scholar 

  • Pereira, C. S., Thompson, J. A., and Xavier, K. B., 2013. AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews, 37: 156–181.

    Article  Google Scholar 

  • Phuvasate, S., Chen, M. H., and Su, Y. C., 2012. Reductions of Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) by depuration at various temperatures. Food Microbiology, 31: 51–56.

    Article  Google Scholar 

  • Poplawsky, A. R., Walters, D. M., Rouviere, P. E., and Chun, W., 2005. A gene for a dioxygenase-like protein determines the production of the DF signal in Xanthomonas campestris pv. campestris. Molecular Plant Pathology, 6: 653–657.

    Article  Google Scholar 

  • Quave, C. L., and Horswill, A. R., 2018. Identification of Staphylococcal quorum sensing inhibitors by quantification of ö-hemolysin with high performance liquid chromatography. Methods in Molecular Biology, 1673: 363–370.

    Article  Google Scholar 

  • Ramage, G., Saville, S. P., Wickes, B. L., and Lopez-Ribot, J. L., 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Applied and Environmental Microbiology, 68: 5459–5463, DOI: https://doi.org/10.1128/aem.68.11.5459-5463.2002.

    Article  Google Scholar 

  • Rasko, D. A., Moreira, C. G., Li, D. R., Reading, N. C., Ritchie, J. M., Waldor, M. K., Williams, N., Taussig, R., Wei, S., Roth, M., Hughes, D. T., Huntley, J. F., Fina, M. W., Falck, J. R., and Sperandio, V., 2008. Targeting QseC signaling and virulence for antibiotic development. Science, 321: 1078–1080.

    Article  Google Scholar 

  • Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., Andersen, J. B., Koch, B., Larsen, T. O., Hentzer, M., Eberl, L., Hoiby, N., and Givskov, M., 2005. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 151: 1325–1340.

    Article  Google Scholar 

  • Reen, F. J., Gutiérrez-Barranquero, J. A., and Parages, M. L., 2018. Coumarin: A novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 102: 2063–2073.

    Article  Google Scholar 

  • Risoen, P. A., Brurberg, M. B., Eijsink, V. G., and Nes, I. F., 2000. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Molecular Microbiology, 37: 619–628, DOI: https://doi.org/10.1046/j.1365-2958.2000.02029.x.

    Article  Google Scholar 

  • Saenz, H. L., Augsburger, V., Vuong, C., Jack, R. W., Götz, F., and Otto, M., 2000. Inducible expression and cellular location of AgrB, a protein involved in the maturation of the Staphylococcal quorum-sensing pheromone. Archives of Microbiology, 174: 452–455.

    Article  Google Scholar 

  • Saurav, K., Bar-Shalom, R., Haber, M., Burgsdorf, I., Oliviero, G., Costantino, V., Morgenstern, D., and Steindler, L., 2016. In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates. Frontiers in Microbiology, 7: 416.

    Article  Google Scholar 

  • Schaefer, A. L., Greenberg, E. P., Oliver, C. M., Oda, Y., Huang, J. J., Bittan-Banin, G., Peres, C. M., Schmidt, S., Juhaszova, K., Sufrin, J. R., and Harwood, C. S., 2008. A new class of homoserine lactone quorum-sensing signals. Nature, 454: 595–599, DOI: https://doi.org/10.1038/nature07088.

    Article  Google Scholar 

  • Schenk, S. T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithöfer, A., Becker, A., Kogel, K. H., and Schikora, A., 2014. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26: 2708–2723.

    Article  Google Scholar 

  • Schipper, C., Hornung, C., Bijtenhoorn, P., Quitschau, M., Grond, S., and Streit, W., 2009. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 75: 224–233.

    Article  Google Scholar 

  • Siddiqui, M. F., Sakinah, M., Singh, L., and Zularisam, A. W., 2012. Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer. Journal of Biotechnology, 161: 190–197, DOI: https://doi.org/10.1016/j.jbiotec.2012.06.029.

    Article  Google Scholar 

  • Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J., and Greenberg, E. P., 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407: 762–764, DOI: https://doi.org/10.1038/35037627.

    Article  Google Scholar 

  • Singh, R., Paul, D., and Jain, R. K., 2006. Biofilms: Implications in bioremediation. Trends in Microbiology, 14: 389–397, DOI: https://doi.org/10.1016/j.tim.2006.07.001.

    Article  Google Scholar 

  • Singh, R., and Ray, P., 2014. Quorum sensing-mediated regulation of Staphylococcal virulence and antibiotic resistance. Future Microbiology, 9: 669–681, DOI: https://doi.org/10.2217/fmb.14.31.

    Article  Google Scholar 

  • Skindersoe, M. E., Ettinger-Epstein, P., Rasmussen, T. B., Bjarnsholt, T., de Nys, R., and Givskov, M., 2008. Quorum sensing antagonism from marine organisms. Marine Biotechnology, 10: 56–63, DOI: https://doi.org/10.1007/s10126-007-9036-y.

    Article  Google Scholar 

  • Suneby, E. G., Herndon, L. R., and Schneider, T. L., 2017. Pseudomonas aeruginosa LasR DNA binding is directly inhibited by quorum sensing antagonists. ACS Infectious Diseases, 3: 183–189, DOI: https://doi.org/10.1021/acsinfecdis.6b00163.

    Article  Google Scholar 

  • Tang, K., Su, Y., Brackman, G., Cui, F., Zhang, Y., Shi, X., Coenye, T., and Zhang, X-H., 2015. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Applied and Environmental Microbiology, 81: 774–782.

    Article  Google Scholar 

  • Tang, K., Zhang, Y., Yu, M., Shi, X., Coenye, T., Bossier, P., and Zhang, X-H., 2013. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Scientific Reports, 3: 2935.

    Article  Google Scholar 

  • Teasdale, M. E., Donovan, K. A., Forschner-Dancause, S. R., and Rowley, D. C., 2011. Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Marine Biotechnology, 13: 722–732, DOI: https://doi.org/10.1007/s10126-010-9334-7.

    Article  Google Scholar 

  • Teasdale, M. E., Liu, J., Wallace, J., Akhlaghi, F., and Rowley, D. C., 2009. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Applied and Environmental Microbiology, 75: 567–572, DOI: https://doi.org/10.1128/AEM.00632-08.

    Article  Google Scholar 

  • Tedder, M. E., Nie, Z., Margosiak, S., Chu, S., Feher, V. A., Almassy, R., Appelt, K., and Yager, K. M., 2004. Structure-based design, synthesis, and antimicrobial activity of purine derived SAH/MTA nucleosidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 14: 3165–3168, DOI: https://doi.org/10.1016/j.bmcl.2004.04.006.

    Article  Google Scholar 

  • Tian, X., He, G-J., Hu, P., Chen, L., Tao, C., Cui, Y. L., Shen, L., Ke, W., Xu, H., Zhao, Y., Xu, Q., Bai, F., Wu, B., Yang, E., Lin, X., and Wang, L., 2018. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nature Microbiology, 3: 698–707, DOI: https://doi.org/10.1038/s41564-018-0160-4.

    Article  Google Scholar 

  • Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., Jaziri, M. E., and Baucher, M., 2010. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 76: 243–253, DOI: https://doi.org/10.1128/AEM.01059-09.

    Article  Google Scholar 

  • von Bodman, S. B., Willey, J. M., and Diggle, S. P., 2008. Cell-cell communication in bacteria: United we stand. Journal of Bacteriology, 190: 4377–4391, DOI: https://doi.org/10.1128/JB.00486-08.

    Article  Google Scholar 

  • Walters, M., and Sperandio, V., 2006. Quorum sensing in Escherichia coli and Salmonella. International Journal of Medical Microbiology, 296: 125–131, DOI: https://doi.org/10.1016/j.ijmm.2006.01.041

    Article  Google Scholar 

  • Wongsuk, T., Pumeesat, P., and Luplertlop, N., 2016. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. Journal of Basic Microbiology, 56: 440–447, DOI: https://doi.org/10.1002/jobm.201500759.

    Article  Google Scholar 

  • Wu, D., Huang, W., Duan, Q., Li, F., and Cheng, H., 2014. Sodium houttuyfonate affects production of N-acyl homoserine lactone and quorum sensing-regulated genes expression in Pseudomonas aeruginosa. Frontiers in Microbiology, 5: 635, DOI: https://doi.org/10.3389/fmicb.2014.00635.

    Google Scholar 

  • Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M., and Hoiby, N., 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. Journal of Antimicrobial Chemotherapy, 53: 1054–1061, DOI: https://doi.org/10.1093/jac/dkh223.

    Article  Google Scholar 

  • Xavier, K. B., and Bassler, B. L., 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 437: 750–753, DOI: https://doi.org/10.1038/nature03960.

    Article  Google Scholar 

  • Zhang, G., Zhang, F., Ding, G., Li, J., Guo, X., Zhu, J., Zhou, L., Cai, S., Liu, X., Luo, Y., Zhang, G., Shi, W., and Dong, X., 2012. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. The ISME Journal, 6: 1336–1344, DOI: https://doi.org/10.1038/ismej.2011.203.

    Article  Google Scholar 

  • Zhang, M., Sun, K., and Sun, L., 2008. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology, 154: 2060–2069, DOI: https://doi.org/10.1099/mic.0.2008/017343-0.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Yunxuan Xie in Tianjin University for his suggestions and language modification. This work was supported by the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (No. YESS20160009), and the National Natural Science Foundation of China (Nos. 31870023, 31571970 and 41506160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Feng, T., Wang, J. et al. The Mechanisms and Applications of Quorum Sensing (QS) and Quorum Quenching (QQ). J. Ocean Univ. China 18, 1427–1442 (2019). https://doi.org/10.1007/s11802-019-4073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-4073-5

Key words

Navigation