Skip to main content
Log in

Association of myostatin variants with growth traits of Zhikong scallop (Chlamys farreri)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Scallop is a popular sea food and an important aquaculture shellfish. Identification of genes and genetic variants relating to scallop growth could benefit high-yielding scallop breeding. Myostatin (MSTN) is a conservative regulator of muscle growth, and has become one of the most important target genes for genetic improvement of the production of farmed animals. In this study, four single nucleotide polymorphisms (SNPs) were identified in the 5’ flanking region of MSTN gene (CfMSTN) in Zhikong scallop (Chlamys farreri). The association of these SNPs with scallop growth traits, including shell length, shell height, body weight and striated muscle weight was analyzed. The SNP g-1162G<T was found to associate with shell length, shell height, and striated muscle weight. The TT type scallops showed significantly higher trait values than those of GT type, and the GG type individuals exhibited median values. On the contrary, significantly more CfMSTN transcripts were detected in the striated muscle of GT type scallops than in those of TT and GG type ones. Our results suggested that CfMSTN might regulate the scallop muscle growth negatively, and SNP g-1162G<T can be used as a candidate marker for the selective breeding of high-yielding scallop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, J., Carpio, Y., Borroto, I., González, O., and Estrada, M. P., 2005. Myostatin gene silenced by RNAi show a zebra fish giant phenotype. Journal of Biotechnology, 119 (4): 324–331.

    Article  Google Scholar 

  • Amali, A. A., Lin, C. J., Chen, Y. H., Wang, W. L., Gong, H. Y., Lee, C. Y., Ko, Y. L., Lu, J. K., Her, G. M., Chen, T. T., and Wu, J. L., 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebra fish (Danio rerio) by knock-down of myostatin-1. Developmental Dynamics, 229 (4): 847–856.

    Article  Google Scholar 

  • Apone, S., and Houschka, S. D., 1995. Muscle gene E-box control elements, evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. Journal of Biological Chemistry, 270 (36): 21420–21427.

    Article  Google Scholar 

  • Bhattacharya, T. K., and Chatterjee, R. N., 2013. Polymorphism of the myostatin gene and its association with growth traits in chicken. Poultry Science, 92 (4): 910–915.

    Article  Google Scholar 

  • Catala, F., Wanner, R., Barton, P., Cohen, A., Wright, L. E., and Buckingham, M., 1995. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene. Molecular and Cellular Biology, 15 (8): 4585–4596.

    Article  Google Scholar 

  • Ceccarelli, E., McGrew, M. J., Nguyen, T., Grieshammer, U., Horgan, D., and Rosenthal, N., 1999. An E box comprises a positional sensor for regional differences in skeletal muscle gene expression and methylation. Developmental Biology. 213 (1): 217–229.

    Article  Google Scholar 

  • Chisada, S., Okamoto, H., Taniguchi, Y., Kimori, Y., Toyoda, A., Sakaki, Y., Takeda, S., and Yoshiura, Y., 2011. Myostatindeficient medaka exhibit a double-muscling phenotype with hyperplasia and hypertrophy, which occur sequentially during post-hatch development. Developmental Biology. 359 (1): 82–94.

    Article  Google Scholar 

  • Covi, J. A., Bader, B. D., Chang, E. S., and Mykles, D. L., 2010. Molt cycle regulation of protein synthesis in skeletal muscle of the blackback land crab, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting. The Journal of Experimental Biology, 213 (1): 172–183.

    Article  Google Scholar 

  • Du, R., An, X. R., Chen, Y. F., and Qin, J., 2007. Some motifs were important for myostatin transcriptional regulation in sheep (Ovis aries). Journal of Biochemistry and Molecular Biology, 40 (4): 547–553.

    Article  Google Scholar 

  • Elkasrawy, M. N., and Hamrick, M. W., 2010. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. Journal of Musculoskeletal & Neuronal Interactions, 10 (1): 56–63.

    Google Scholar 

  • Farhadian, M., Hashemi, A., Mardani, K., Darvishzadeh, R., and Jafari, S., 2012. Polymorphisms in the ovine myostatin gene are associated with birth weight but not with weight gain in Iranian Makoei sheep. Genetics and Molecular Research, 11 (4): 3568–3575.

    Article  Google Scholar 

  • Guo, H., Bao, Z., Li, J., Lian, S., Wang, S., He, Y., Fu, X., Zhang, L., and Hu, X., 2012. Molecular characterization of TGF-ß type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One, 7 (11): e51005.

    Article  Google Scholar 

  • Guo, L., Li, L., Zhang, S., Guo, X., and Zhang, G., 2011. Novel polymorphisms in the myostatin gene and their association with growth traits in a variety of bay scallop, Argopecten irradians. Animal Genetics, 42 (3): 339–340.

    Article  Google Scholar 

  • Gjuvsland, A. B., Plahte, E., Ådnøy, T., and Omholt, S. W., 2010. Allele interaction–single locus genetics meets regulatory biology. PLoS ONE, 5 (2): e9379.

    Article  Google Scholar 

  • Hu, X., Bao, Z., Hu, J., Shao, M., Zhang, L., Bi, K., Zhan, A., and Huang, X., 2006. Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquaculture Research, 37 (12): 1187–1194.

    Article  Google Scholar 

  • Hu, X., Guo, H., He, Y., Wang, S., Zhang, L., Wang, S., Huang, X., Roy, S. W., Lu, W., Hu, J., and Bao, Z., 2010. Molecular characterization of Myostatin gene from Zhikong scallop Chlamys farreri (Jones et Preston 1904). Genes & Genetic Systems, 85 (3): 207–218.

    Article  Google Scholar 

  • Kim, H. W., Mykles, D. L., Goetz, F. W., and Roberts, S. B., 2004. Characterization of a myostatin-like gene from the bay scallop, Argopecten irradians. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1679 (2): 174–179.

    Article  Google Scholar 

  • Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., and Kambadur, R., 2002. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. Journal of Biological Chemistry, 277 (51): 49831–49840.

    Article  Google Scholar 

  • Lapraz, F., Röttinger, E., Duboc, V., Range, R., Duloquin, L., Walton, K., Wu, S. Y., Bradham, C., Loza, M. A., Hibino, T., Wilson, K., Poustka, A., McClay, D., Angerer, L., Gache, C., and Lepage, T., 2006. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Developmental Biology, 300 (1): 132–152.

    Article  Google Scholar 

  • Lee, C. Y., Hu, S. Y., Gong, H. Y., Chen, M. H., Lu, J. K., and Wu, J. L., 2009. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebra fish. Biochemical and Biophysical Research Communications, 387 (4): 766–771.

    Article  Google Scholar 

  • Lee, S. J., 2004. Regulation of muscle mass by myostatin. Annual Review of Cell and Developmental Biology, 20: 61–86.

    Article  Google Scholar 

  • Liu, L., Yu, X., and Tong, J., 2012. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Molecular Biology Reports, 39 (9): 9211–9221.

    Article  Google Scholar 

  • Liu, X., Chang, Y., Xiang, J., Song, J., and Ding, J., 2002. Analysis of effects of shell size characters on live weight in Chinese scallop Chlamys Farreri. Oceanologia et Limnologia Sinica, 33 (6): 673–677.

    Google Scholar 

  • Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F., and Patarnello, T., 2001. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): Sequence, genomic structure, and expression pattern. Marine Biotechnology, 3 (3): 224–330.

    Article  Google Scholar 

  • MacLea, K. S., Covi, J. A., Kim, H. W., Chao, E., Medler, S., Chang, E. S., and Mykles, D. L., 2010. Myostatin from the American lobster, Homarus americanus: Cloning and effects of molting on expression in skeletal muscles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 157 (4): 328–337.

    Article  Google Scholar 

  • McGivney, B. A., Browne, J. A., Fonseca, R. G., Katz, L. M., Machugh, D. E., Whiston, R., and Hill, E. W., 2012. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Animal genetics, 43 (6): 810–812.

    Article  Google Scholar 

  • McPherson, A. C., Lawler, A. M., and Lee, S. J., 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387: 83–90.

    Article  Google Scholar 

  • Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G., and Ostrander, E. A., 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 3 (5): e79.

    Article  Google Scholar 

  • Qian, Z., Mi, X., Wang, X., He, S., Liu, Y., Hou, F., Liu, Q., and Liu, X., 2013. cDNA cloning and expression analysis of myostatin/ GDF11 in shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165 (1): 30–39.

    Article  Google Scholar 

  • Radaelli, G., Rowlerson, A., Mascarello, F., Patruno, M., and Funkenstein, B., 2003. Myostatin precursor is present in several tissues in teleost fish: A comparative immunolocalization study. Cell and Tissue Research, 311 (2): 239–250.

    Google Scholar 

  • Rao, M. V., Donoghue, M. J., and Merlie, J. P., 1996. Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice. Molecular and Cellular Biology, 16 (7): 3909–3922.

    Article  Google Scholar 

  • Reisz-Porszasz, S., Bhasin, S., Artaza, J. N., Shen, R., Sinha-Hikim, I., Hogue, A., Fielder, T. J., and Gonzalez-Cadavid, N. F., 2003. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. American Journal of Physiology-Endocrinology and Metabolism, 285 (4): E876–E888.

    Article  Google Scholar 

  • Ríos, R., Carneiro, I., Arce, V. M., and Devesa, J., 2002. Myostatin is an inhibitor of myogenic differentiation. American Journal of Physiology-Cell Physiology, 282 (5): C993–999.

    Article  Google Scholar 

  • Rodgers, B. D., and Garikipati, D. K., 2008. Clinical, agricultural, and evolutionary biology of myostatin: A comparative review. Endocrine Reviews, 29 (5): 513–534.

    Article  Google Scholar 

  • Sawatari, E., Seki, R., Adachi, T., Hashimoto, H., Uji, S., Wakamatsu, Y., Nakata, T., and Kinoshita, M., 2010. Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155 (2): 183–189.

    Article  Google Scholar 

  • Schuelke, M., Wagner, K. R., Stolz, L. E., Hübner, C., Riebel, T., Kömen, W., Braun, T., Tobin, J. F., and Lee, S. J., 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350 (26): 2682–2688.

    Article  Google Scholar 

  • Stinckens, A., Georges, M., and Buys, N., 2010. Mutations in the myostatin gene leading to hypermuscularity in mammals: Indications for a similar mechanism in fish? Animal Genetics, 42 (3): 229–234.

    Article  Google Scholar 

  • Terova, G., Rimoldi, S., Bernardini, G., and Saroglia, M., 2013. Inhibition of myostatin gene expression in skeletal muscle of fish by in vivo electrically mediated dsRNA and shRNAi delivery. Molecular Biotechnology, 54 (2): 673–684.

    Article  Google Scholar 

  • Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., and Kambadur, R., 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. Journal of Biological Chemistry, 275 (51): 40235–40243.

    Article  Google Scholar 

  • Wang, S., Bao, Z., Hu, X., Shao, M., Zhang, L., and Hu, J., 2008. Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis). Genetica, 133 (1): 37–46.

    Article  Google Scholar 

  • Wang, S., Zhang, L., Meyer, E., and Matz, M. V., 2009. Construction of a high-resolution genetic linkage map and comparative genome analysis for the reef-building coral Acropora millepora. Genome Biology, 10 (11): R126.

    Google Scholar 

  • Wang, X., Meng, X., Song, B., Qiu, X., and Liu, H., 2010. SNPs in the myostatin gene of the mollusk Chlamys farreri: Association with growth traits. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 155 (3): 327–330.

    Article  Google Scholar 

  • Xu, C., Wu, G., Zohar, Y., and Du, S. J., 2003. Analysis of myostatin gene structure, expression and function in zebra fish. Journal of Experimental Biology, 206 (22): 4067–4079.

    Article  Google Scholar 

  • Zhang, Z. J., Ling, Y. H., Wang, L. J., Hang, Y. F., Guo, X. F., Zhang, Y. H., Ding, J. P., and Zhang, X. R., 2013. Polymorphisms of the myostatin gene (MSTN) and its relationship with growth traits in goat breeds. Genetics and Molecular Research, 12 (2): 965–971.

    Article  Google Scholar 

  • Zhao, S., and Fernald, R. D., 2005. Comprehensive algorithm for quantitative real-time polymerase chain reaction. Journal of Computational Biology, 12 (8): 1047–1064.

    Article  Google Scholar 

  • Zhu, Y. Y., Liang, H. W., Li, Z., Luo, X. Z., Li, L., Zhang, Z. W., and Zou, G. W., 2012. Polymorphism of MSTN gene and its association with growth traits in yellow catfish (Pelteobagruse fulvidraco). Yi Chuan, 34 (1): 72–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Hu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Guo, H., Feng, L. et al. Association of myostatin variants with growth traits of Zhikong scallop (Chlamys farreri). J. Ocean Univ. China 15, 145–151 (2016). https://doi.org/10.1007/s11802-016-2633-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-2633-5

Key words

Navigation