Skip to main content
Log in

Coherence analysis of noise-like pulses generated by an erbium-doped fiber mode-locked laser

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The noise-like pulses (NLPs) with tunable fraction of the pedestal height in the whole intensity autocorrelation (AC) trace are numerically demonstrated in the designed erbium-doped fiber (EDF) mode-locked laser, which contains the saturable absorber (SA) with nonlinear polarization rotation (NPR), sinusoidal-shaped or Gaussian-shaped filter, two segments of EDFs, and two pieces of single-mode fibers (SMFs) with normal dispersion and anomalous dispersion, respectively. The pedestal ratio of the intensity AC trace can be tuned by changing the gain saturation energies of EDFs. The results show that when the net cavity dispersion is 1.06 ps2, the tuning range of the pedestal ratio for the NLPs can reach its maximum values, which are 0.51–0.89 and 0.58–0.88 for the sinusoidal-shaped and Gaussian-shaped filters, respectively. In addition, an appropriate choice of filter bandwidth is also conducive to obtain a wide range of the tuning pedestal ratio for the intensity AC trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SERGEY S, SERGEY K, SERGEY K, et al. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation[J]. Optics express, 2012, 20(24): 27447–27453.

    Article  ADS  Google Scholar 

  2. NELSON L E, JONES D J, TAMURA K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied physics, 1997, B65(2): 277–294.

    Article  Google Scholar 

  3. HAN X X. Conventional soliton or stretched pulse delivered by nanotube-mode-locked fiber laser[J]. Applied optics, 2018, 57(4): 807–811.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. CHONG A, WRIGHT L G, WISE F W. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress[J]. Reports on progress in physics, 2015, 78(11): 113901.

    Article  PubMed  Google Scholar 

  5. GRELU P, AKHMEDIEV N. Dissipative solitons for mode-locked lasers[J]. Nature photonics, 2012, 6(2): 84–92.

    Article  ADS  CAS  Google Scholar 

  6. CHANG W, ANKIEWICZ A, SOTO-CRESPO J M, et al. Dissipative soliton resonances[J]. Physical review E, 2008, 78(2): 023830.

    Article  ADS  Google Scholar 

  7. HOROWITZ M, BARAD Y, SILBERBERG Y. Noise-like pulses with a broadband spectrum generated from an erbium-doped fiber laser[J]. Optics letters, 1997, 22(11): 799–801.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. LI X, ZHANG S, LIU J, et al. Using reverse saturable absorption to boost broadband noise-like pulses[J]. Journal of lightwave technology, 2020, 38(14): 3769–3774.

    Article  ADS  CAS  Google Scholar 

  9. MENG F, LAPRE C, BILLET C, et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser[J]. Nature communication, 2021, 12: 5567.

    Article  ADS  CAS  Google Scholar 

  10. LI C, KONG C, WONG K K Y. High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 µm[J]. IEEE photonics journal, 2019, 99: 1.

    Google Scholar 

  11. BOUCON A, BARVIAU B, FATOME J, et al. Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser[J]. Applied physics, 2012, 106(2): 283–287.

    Article  CAS  Google Scholar 

  12. LI J, WANG C, WANG P. Tunable noise-like pulse and Q-switched erbium-doped fiber laser[J]. Optics express, 2022, 30(4): 4768–4781.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. MASHIKO Y, FUJITA E, TOKURAKAWA M. Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM[J]. Optics express, 2016, 24(23): 26515.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. LI X, ZHANG S, YANG Z. Noise-like pulse fiber lasers[C]//2022 20th International Conference on Optical Communications and Networks (ICOCN), August 12–15, 2022, Shenzhen, China. New York: IEEE, 2022: 1–3.

    Google Scholar 

  15. KEREN S, HOROWITZ M. Interrogation of fiber gratings using spectral interferometry of a low-coherence light source[C]//Conference on Lasers & Electro-Optics, May 7–12, 2000, San Francisco, CA, USA. New York: IEEE, 2020.

    Google Scholar 

  16. MARSCHALL S, KLEIN T, WIESER W, et al. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier[J]. Optics express, 2010, 18(15): 15820.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. KEREN S, BRAND E, LEVI Y, et al. Data storage in optical fibers and reconstruction by use of low-coherence spectral interferometry[J]. Optics letters, 2022, 27(2): 125–127.

    Article  ADS  Google Scholar 

  18. SERGEY K, SERGEY K, SERGEY S, et al. Generation of double-scale femto/picosecond optical lumps in mode-locked fiber lasers[J]. Optics express, 2009, 17(23): 20707.

    Article  Google Scholar 

  19. ZHAO Q, PAN W W, ZENG X L, et al. Partially coherent noise-like pulse generation in amplified spontaneous Raman emission[J]. Applied optics, 2018, 57(9): 2282–2286.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. XU R Q, XU F J, SONG Y R, et al. Impact of spectral filtering on pulse breaking-up and noise-like pulse generation in all-normal dispersion fiber lasers[J]. Optics express, 2020, 28(15): 21348–21358.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. LI X L, ZHANG S M, LIU J M, et al. Efficient method to improve the distribution probability of dissipative soliton and noise-like pulse in all-normal-dispersion fiber lasers[J]. Optics express, 2022, 30(4): 6161–6175.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. LIU S, YAN F, LI Y, et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion[J]. Photonics research, 2016, 4(6): 318–321.

    Article  CAS  Google Scholar 

  23. TANG D Y, ZHAO L M, ZHAO B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser[J]. Optics express, 2005, 13(7): 2289–2294.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. LEI D, YANG H, DONG H, et al. Effect of birefringence on the bandwidth of noise-like pulse in an erbium-doped fiber laser[J]. Journal of modern optics, 2009, 56(4): 572–576.

    Article  ADS  CAS  Google Scholar 

  25. DONG T H, LIN J Q, ZHOU Y, et al. Noise-like square pulses in a linear-cavity NPR mode-locked Yb-doped fiber laser[J]. Optics and laser technology, 2021, 136(1): 106740.

    Article  CAS  Google Scholar 

  26. LUO A P, LUO Z C, LIU H, et al. Noise-like pulse trapping in a figure-eight fiber laser[J]. Optics express, 2015, 23: 10421.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. XU R Q, TIAN J R, SONG Y R. Noise-like pulses with a 14.5 fs spike generated in an Yb-doped fiber nonlinear amplifier[J]. Optics letters, 2018, 43(8): 1910.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. LAUTERIO-CRUZ J P, HERNANDEZ-GARCIA J C, POTTIEZ O, et al. High energy noise-like pulsing in a double-clad Er/Yb figure-of-eight fiber laser[J]. Optics express, 2016, 24(13): 13778–13787.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. TANG Y X, LIU Z W, FU W, et al. Self-similar pulse evolution in a fiber laser with a comb-like dispersion-decreasing fiber[J]. Optics letters, 2016, 41(10): 2290–2293.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. YOFC dispersion compensating fiber (DCF)[EB/OL]. (2023-01-25) [2023-05-26]. http://en.yofc.com/view/2370.html.

  31. LIU Z, ZHANG S, WISE F W. Rogue waves in a normal-dispersion fiber laser[J]. Optics letters, 2015, 4: 1366–1369.

    Article  ADS  Google Scholar 

  32. GENIER E, BOWEN P, SYLVESTRE T, et al. Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers[J]. Journal of the optical society of America B, 2019, 36(2): A161.

    Article  CAS  Google Scholar 

  33. CHENG Z C, LI H H, WANG P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers[J]. Optics express, 2015, 23(5): 5972–5981.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. DUDLEY J M, GENTY G, STÉPHANE C. Supercontinuum generation in photonic crystal fiber[J]. Review of modern physics, 2006, 78: 1135.

    Article  ADS  CAS  Google Scholar 

  35. ZAYTSEV A K, LIN C H, YOU Y J, et al. A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser[J]. Laser physics letters, 2013, 10(4): 045104.

    Article  ADS  CAS  Google Scholar 

  36. ZHANG Z C, WANG S, PU Y J, et al. Improving the formation probability and stability of noise-like pulse by weakening the spectrum filtering effect[J]. Optics express, 2012, 30(18): 31998–32009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuncan Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61575018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, C., Li, J. et al. Coherence analysis of noise-like pulses generated by an erbium-doped fiber mode-locked laser. Optoelectron. Lett. 20, 205–210 (2024). https://doi.org/10.1007/s11801-024-3133-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3133-2

Document code

Navigation