Skip to main content
Log in

Generation and coherent characteristics analysis of laser phase modulation spectrum by cascaded phase modulators

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Laser phase modulation spectrum with 25 frequency bands is generated by modulating a single frequency laser with two cascaded phase modulators (PMs) with driving voltage amplitudes at 3.2 V and 7.8 V, respectively. And the time delay self-heterodyne method is adopted to measure and analyze the coherent characteristics of the original single frequency laser light and the generated multi-frequency light from two phase modulation schemes. By comparison of laser linewidth, the experimental results show that the laser phase modulation does not change the coherent characteristics of each frequency band, and the laser phase modulation spectra benefit the performance optimization for the Rayleigh scattering based optical fiber sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG D, XI L, TANG X, et al. A simple photonic precoding-less scheme for vector millimeter-wave signal generation based on a single phase modulator[J]. Results in physics, 2020, 19(103412): 1–5.

    Google Scholar 

  2. WEI X, MU H, LI M, et al. Arbitrary free spectral range control of optical frequency combs based on an optical tapped delay line structure cascaded with a phase modulator[J]. Optoelectronics letters, 2021, 17(7): 0390–0394.

    Article  ADS  Google Scholar 

  3. CUI Y, WANG Z, XU Y, et al. Generation of flat optical frequency comb using cascaded PMs with combined harmonics[J]. IEEE photonics technology letters, 2022, 34(9): 490–493.

    Article  ADS  Google Scholar 

  4. GUO Y, WANG M, MU H, et al. Simultaneous frequency and bandwidth doubling linearly chirped waveform generation based on cascaded phase modulator and dual-output dual-parallel Mach-Zehnder modulator[J]. Optik, 2021, 243(19): 167384.

    Article  ADS  Google Scholar 

  5. ULLAH S, ULLAH R, ZHANG Q, et al. Ultra-wide and flattened optical frequency comb generation based on cascaded phase modulator and LiNbO3-MZM offering terahertz bandwidth[J]. IEEE access, 2020, 8: 76692–76698.

    Article  Google Scholar 

  6. SUMIDA M. Optical time domain reflectometry using an M-ary FSK probe and coherent detection[J]. Journal of lightwave technology, 1996, 14(11): 2483–2491.

    Article  ADS  Google Scholar 

  7. IIDA H, KOSHIKIYA Y, ITO F, et al. High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing[J]. Journal of lightwave technology, 2012, 30(8): 1121–1126.

    Article  ADS  Google Scholar 

  8. LU L, SONG Y, FAN Z, et al. Dual frequency probe based coherent optical time domain reflectometry[J]. Optics communications, 2012, 285(10): 2492–2495.

    Article  ADS  Google Scholar 

  9. LU L, SONG Y, FAN Z, et al. Coherent optical time domain reflectometry using three frequency multiplexing probe[J]. Optics and lasers in engineering, 2012, 50(12): 1735–1739.

    Article  ADS  Google Scholar 

  10. LU L, SONG Y, ZHANG X, et al. Frequency division multiplexing OTDR with fast signal processing[J]. Optics & laser technology, 2012, 44(7): 2206–2209.

    Article  ADS  Google Scholar 

  11. ZHOU J, PAN Z, YE Q, et al. Characteristics and explanations of interference fading of a phi-OTDR with a multi-frequency source[J]. Journal of lightwave technology, 2013, 31(17): 2947–2954.

    Article  ADS  Google Scholar 

  12. QIAN H, LUO B, HE H, et al. Fading-free φ-OTDR with multi-frequency decomposition[J]. IEEE sensors journal, 2022, 22(3): 2160–2166.

    Article  ADS  Google Scholar 

  13. XU N, WANG P, WANG Y, et al. Crosstalk noise suppressed for multi-frequency φ-OTDR using compressed sensing[J]. Journal of lightwave technology, 2021, 39(22): 7343–7349.

    Article  ADS  Google Scholar 

  14. LV L, SONG Y, ZHU F, et al. Performance limit of a multi-frequency probe based coherent optical time domain reflectometry caused by nonlinear effects[J]. Chinese optics letters, 2012, 10(4): 4.

    Article  Google Scholar 

  15. LU L, SUN X, BU X, et al. Coherent optical time domain reflectometry by logarithmic detection and timed random frequency hopping[J]. Optical engineering, 2017, 56(2): 024106.

    Article  ADS  Google Scholar 

  16. WANG Z, WU Y, XIONG J, et al. Bipolar-coding φ-OTDR with interference fading elimination and frequency drift compensation[J]. Journal of lightwave technology, 2020, 38(21): 6121–6128.

    Article  ADS  Google Scholar 

  17. HAN M, WANG A. Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement[J]. Applied physics B, 2005, 81(1): 53–58.

    Article  Google Scholar 

  18. CHEN M, ZHOU M, WANG J, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics express, 2015, 23(5): 6803–6808.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Lü.

Additional information

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

This work has been supported by the National Natural Science Foundation of China (No. 51977001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, L., Gao, Q. & Yong, M. Generation and coherent characteristics analysis of laser phase modulation spectrum by cascaded phase modulators. Optoelectron. Lett. 18, 449–453 (2022). https://doi.org/10.1007/s11801-022-1194-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1194-7

Document code

Navigation