Skip to main content
Log in

Nontriviality of John–Nirenberg–Campanato Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let \(p,q\in [1,\infty )\), \(\alpha \in {\mathbb {R}}\), and s be a non-negative integer. This article addresses the nontriviality of the John–Nirenberg–Campanato space \(JN_{(p,q,s)_\alpha }({\mathcal {X}})\), where \({\mathcal {X}}\) denotes \({\mathbb {R}}^n\) or any given cube of \({\mathbb {R}}^n\). First, the authors obtain some (non-)trivial ranges of \(\{p,q,s,\alpha \}\), which sheds some light on the independence of \(JN_{(p,q,s)_\alpha }({\mathcal {X}})\) over the second subindex q. Second, for positive \(\alpha \), the authors show that \(JN_{(p,q,s)_\alpha }({\mathcal {X}})\) is different from the Campanato space via establishing an embedding from the fractional Sobolev space to \(JN_{(p,q,s)_\alpha }({\mathcal {X}})\). Third, for negative \(\alpha \), the authors show that the Riesz–Morrey space \(RM_{p,q,\alpha }({\mathcal {X}})\) is a proper subspace of \(JN_{(p,q,s)_\alpha }({\mathcal {X}})\), which gives a negative answer to the conjecture on the equivalence between John–Nirenberg–Campanato spaces and Riesz–Morrey spaces. Moreover, the nontriviality of local John–Nirenberg–Campanato spaces is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analysed.

References

  1. Brudnyi, A., Brudnyi, Y.: On the Banach structure of multivariate BV spaces. Diss. Math. 548, 1–52 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Campanato, S.: Proprietá di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18, 137–160 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Chen, P., Duong, X.-T., Li, J., Song, L., Yan, L.: BMO spaces associated to operators with generalised Poisson bounds on non-doubling manifolds with ends. J. Differ. Equ. 270, 114–184 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Li, J.: Quantitative weighted bounds for Calderón commutators with rough kernels. Stud. Math. 263, 339–360 (2022)

    Article  MATH  Google Scholar 

  5. Chen, Y., Guo, Z.: An extension of Calderón-Zygmund type singular integral with non-smooth kernel. J. Funct. Anal. 281(109196), 1–21 (2021)

    MATH  Google Scholar 

  6. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dafni, G., Hytönen, T., Korte, R., Yue, H.: The space \(JN_p\): nontriviality and duality. J. Funct. Anal. 275, 577–603 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeVore, R.A., Sharpley, R.C.: Maximal functions measuring smoothness. Mem. Am. Math. Soc. 47(293), 1–115 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Duong, X.-T., Li, H., Li, J., Wick, B.D.: Lower bound of Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups. J. Math. Pures Appl. (9) 124, 273–299 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, Z., Lu, S., Shi, S.: Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. 33, 505–529 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, W., Lian, J., Wu, H.: The unified theory for the necessity of bounded commutators and applications. J. Geom. Anal. 30, 3995–4035 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Izuki, M., Noi, T., Sawano, Y.: The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO. J. Inequal. Appl. 2019(268), 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Izuki, M., Sawano, Y.: Characterization of BMO via ball Banach function spaces. Vestn. St. Peterbg. Univ. Mat. Mekh. Astron. 4(62), 78–86 (2017)

    MathSciNet  Google Scholar 

  15. Jia, H., Tao, J., Yang, D., Yuan, W., Zhang, Y.: Special John–Nirenberg–Campanato spaces via congruent cubes. Sci. China Math. 65, 359–420 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, H., Tao, J., Yang, D., Yuan, W., Zhang, Y.: Boundedness of Calderón-Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes. Anal. Math. Phys. 12(15), 1–56 (2022)

    MATH  Google Scholar 

  17. Jia, H., Tao, J., Yang, D., Yuan, W., Zhang, Y.: Boundedness of fractional integrals on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes. Fract. Calc. Appl. Anal. 25, 2446–2487 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jia, H., Yang, D., Yuan, W., Zhang, Y.: Estimates for Littlewood–Paley operators on ball Campanato-type function spaces. Results Math. 78(37), 1–56 (2023)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, R., Li, K., Xiao, J.: Flow with \(A_{\infty }({\mathbb{R} })\) density and transport equation in BMO(\({\mathbb{R} }\)). Forum Math. Sigma 7(e43), 1–30 (2019)

    MathSciNet  Google Scholar 

  20. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Korte, R., Takala, T.: The John–Nirenberg space: equality of the vanishing subspaces \(VJN_p\) and \(CJN_p\). arXiv:2303.12064

  22. Lacey, M., Li, J.: Compactness of commutator of Riesz transforms in the two weight setting. J. Math. Anal. Appl. 508(125869), 1–11 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Li, K., Martikainen, H., Vuorinen, E.: Bloom type upper bounds in the product BMO setting. J. Geom. Anal. 30, 3181–3203 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, J., Xie, G., Yang, D.: Localized John–Nirenberg–Campanato spaces. Anal. Math. Phys. 11(29), 1–47 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces. In: Representation Theorems for Hardy Spaces, Astérisque 77, pp. 67-149. Soc. Math. France, Paris (1980)

  26. Takala, T.: Nontrivial examples of JNp and VJNp functions. Math. Z. 302, 1279–1305 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, J., Yang, D., Yuan, W.: A survey on function spaces of John–Nirenberg type. Mathematics 9(2264), 1–57 (2021). https://doi.org/10.3390/math9182264

    Article  Google Scholar 

  28. Tao, J., Yang, D., Yuan, W.: John–Nirenberg–Campanato spaces. Nonlinear Anal. 189(111584), 1–33 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Tao, J., Yang, D., Yuan, W.: A bridge connecting Lebesgue and Morrey spaces via Riesz norms. Banach J. Math. Anal. 15(20), 1–29 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Tao, J., Yang, Z., Yuan, W.: John–Nirenberg-\(Q\) spaces via congruent cubes. Acta Math. Sci. Ser. B (Engl. Ed.) 43, 686–718 (2023)

    MathSciNet  MATH  Google Scholar 

  31. Wu, H., Yang, D.: Characterizations of weighted compactness of commutators via CMO. Proc. Am. Math. Soc. 146, 4239–4254 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeng, Z., Chang, D.-C., Tao, J., Yang, D.: Nontriviality of Riesz–Morrey spaces. Appl. Anal. 101, 6548–6572 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors developed and discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Dachun Yang.

Ethics declarations

Conflict of interest

All authors state no conflict of interest.

Informed consent

Informed consent has been obtained from all individuals included in this research work.

Additional information

Communicated by Siqi Fu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection in honour of the 70th Birthday of Professor S.G. Krantz.

This project is partially supported by the National Key Research and Development Program of China (Grant No. 2020YFA0712900) and the National Natural Science Foundation of China (Grant Nos. 11971058 and 12071197). Der-Chen Chang is partially supported by a McDevitt Endowment Fund at Georgetown University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Chang, DC., Tao, J. et al. Nontriviality of John–Nirenberg–Campanato Spaces. Complex Anal. Oper. Theory 17, 70 (2023). https://doi.org/10.1007/s11785-023-01378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01378-0

Keywords

Mathematics Subject Classification

Navigation