Skip to main content
Log in

Boundedness of fractional integrals on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Let \(p\in [1,\infty ]\), \(q\in [1,\infty )\), \(s\in \mathbb {Z}_+:=\mathbb {N}\cup \{0\}\), \(\alpha \in \mathbb {R}\), and \(\beta \in (0,1)\). In this article, the authors first find a reasonable version \(\widetilde{I}_{\beta }\) of the (generalized) fractional integral \(I_{\beta }\) on the special John–Nirenberg–Campanato space via congruent cubes, \(JN_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\), which coincides with the Campanato space \(\mathcal {C}_{\alpha ,q,s}(\mathbb {R}^n)\) when \(p=\infty \). To this end, the authors introduce the vanishing moments up to order s of \(I_{\beta }\). Then the authors prove that \(\widetilde{I}_{\beta }\) is bounded from \(JN_{(p,q,s)_\alpha }^{\textrm{con}}(\mathbb {R}^n)\) to \(JN_{(p,q,s)_{\alpha +\beta /n}}^{\textrm{con}}(\mathbb {R}^n)\) if and only if \(I_{\beta }\) has the vanishing moments up to order s. The obtained result is new even when \(p=\infty \) and \(s\in \mathbb {N}\), namely, the Campanato space. Moreover, the authors show that \(I_{\beta }\) can be extended to a unique continuous linear operator from the Hardy-kind space \(HK_{(p,q,s)_{\alpha +\beta /n}}^{\textrm{con}}(\mathbb {R}^n)\), the predual of \(JN_{(p',q',s)_{\alpha +\beta /n}}^{\textrm{con}}(\mathbb {R}^n)\) with \(\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'}\), to \(HK_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\) if and only if \(I_{\beta }\) has the vanishing moments up to order s. The proof of the latter boundedness strongly depends on the dual relation \((HK_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n))^{*} =JN_{(p',q',s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\), the good properties of molecules of \(HK_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\), and the crucial criterion for the boundedness of linear operators on \(HK_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

Not applicable.

References

  1. Aalto, D., Berkovits, L., Kansanen, O.E., Yue, H.: John–Nirenberg lemmas for a doubling measure. Studia Math. 204(1), 21–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arai, R., Nakai, E.: Compact commutators of Calderón–Zygmund and generalized fractional integral operators with a function in generalized Campanato spaces on generalized Morrey spaces. Tokyo J. Math. 42(2), 471–496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arai, R., Nakai, E., Sawano, Y.: Generalized fractional integral operators on Orlicz–Hardy spaces. Math. Nachr. 294(2), 224–235 (2021)

    Article  MathSciNet  Google Scholar 

  4. Berkovits, L., Kinnunen, J., Martell, J.M.: Oscillation estimates, self-improving results and good-\(\lambda \) inequalities. J. Funct. Anal. 270(9), 3559–3590 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Amer. Math. Soc. 164(781), 1–122 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18, 137–160 (1964)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Jia, H., Yang, D.: Boundedness of fractional integrals on Hardy spaces associated with ball quasi-Banach function spaces. Tokyo J. Math. (to appear)

  8. Chen, Y., Jia, H., Yang, D.: Boundedness of fractional integrals on ball Campanato-type function spaces. Bull. Sci. Math. (to appear)

  9. Chen, T., Sun, W.: Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces. Math. Ann. 379(3–4), 1089–1172 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dafni, G., Hytönen, T., Korte, R., Yue, H.: The space \(JN_p\): nontriviality and duality. J. Funct. Anal. 275(3), 577–603 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, Y., Lee, M.-Y., Lin, C.-C.: Fractional integrals on weighted Hardy spaces. J. Math. Anal. Appl. 282(1), 356–368 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Domínguez, Ó., Milman, M.: Sparse Brudnyi and John–Nirenberg spaces. C. R. Math. Acad. Sci. Paris 359, 1059–1069 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI (2001)

  14. García-Cuerva, J., Gatto, A.E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162(3), 245–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatto, A.E., Vági, S.: Fractional integrals on spaces of homogeneous type. In: Analysis and Partial Differential Equations, 171–216, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York (1990)

  16. Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18(5), 1128–1145 (2015). https://doi.org/10.1515/fca-2015-0065

    Article  MathSciNet  MATH  Google Scholar 

  17. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. I. Math. Z. 27(1), 565–606 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ho, K.-P.: Erdélyi–Kober fractional integrals on Hardy space and BMO. Proyecciones 39(3), 663–677 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ho, K.-P.: Martingale transforms and fractional integrals on rearrangement-invariant martingale Hardy spaces. Period. Math. Hungar. 81(2), 159–173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ho, K.-P.: Erdélyi–Kober fractional integral operators on ball Banach function spaces. Rend. Semin. Mat. Univ. Padova 145, 93–106 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ho, K.-P.: Sublinear operators on Herz–Hardy spaces with variable exponents. Math. Nachr. 295(5), 876–889 (2022)

    Article  MathSciNet  Google Scholar 

  22. Ho, K.-P.: Fractional integral operators on Orlicz slice Hardy spaces. Fract. Calc. Appl. Anal. 25(3), 1294–1305 (2022). https://doi.org/10.1007/s13540-022-00043-1

  23. Jia, H., Tao, J., Yang, D., Yuan, W., Zhang, Y.: Special John–Nirenberg–Campanato spaces via congruent cubes. Sci. China Math. 65(2), 359–420 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jia, H., Tao, J., Yang, D., Yuan, W., Zhang, Y.: Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes. Anal. Math. Phys. 12(1), Paper No. 15, 56 pp (2022)

  25. Jia, H., Yang, D., Yuan, W., Zhang, Y.: Estimates for Littlewood–Paley operators on ball Campanato-type function spaces. Results Math. (to appear)

  26. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, L., Xiao, J.: Morrey’s fractional integrals in Campanato–Sobolev’s space and \({{\rm div}}\, F=f\). J. Math. Pures Appl. 9(142), 23–57 (2020)

    Article  MATH  Google Scholar 

  28. Lu, S.: Four Lectures on Real \(H^p\) Spaces. World Scientific Publishing Co., Inc, River Edge, NJ (1995)

    Book  MATH  Google Scholar 

  29. Maz’ya, V.G., Verbitsky, I.E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33(1), 81–115 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Milman, M.: Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities. Ann. Acad. Sci. Fenn. Math. 41(1), 491–501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milman, M.: Garsia–Rodemich spaces: Bourgain–Brezis–Mironescu space, embeddings and rearrangement-invariant spaces. J. Anal. Math. 139(1), 121–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nakai, E.: On generalized fractional integrals. Taiwanese J. Math. 5(3), 587–602 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nakai, E.: Singular and fractional integral operators on Campanato spaces with variable growth conditions. Rev. Mat. Complut. 23(2), 355–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition. Sci. China Math. 60(11), 2219–2240 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nakai, E., Sadasue, G.: Martingale Morrey–Campanato spaces and fractional integrals, J. Funct. Spaces Appl., Art. ID 673929, 29 pp (2012)

  36. Podlubny, I.: Riesz potential and Riemann–Liouville fractional integrals and derivatives of Jacobi polynomials. Appl. Math. Lett. 10(1), 103–108 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rubin, B.: Fractional Integrals and Potentials. Pitman Monographs and Surveys in Pure and Applied Mathematics 82, Longman, Harlow (1996)

  38. Sawano, Y., Shimomura, T.: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces. Z. Anal. Anwend. 36(2), 159–190 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sawyer, E., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math. 114(4), 813–874 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, S., Lu, S.: A characterization of Campanato space via commutator of fractional integral. J. Math. Anal. Appl. 419(1), 123–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sobolev, S.L.: On a theorem in functional analysis. Mat. Sb. 4(46), 471–497 (1938)

    Google Scholar 

  42. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ (1970)

  43. Stein, E.M., Shakarchi, R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis 4, Princeton University Press, Princeton, NJ (2011)

  44. Sun, J., Xie, G., Yang, D.: Localized John–Nirenberg–Campanato spaces. Anal. Math. Phys. 11(1), Paper No. 29, 47 pp (2021)

  45. Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces. Representation theorems for Hardy spaces. In: Astérisque 77, 67–149, Soc. Math. France, Paris (1980)

  46. Tao, J., Yang, D., Yuan, W.: John–Nirenberg–Campanato spaces. Nonlinear Anal. 189, Art. 111584, 36 pp (2019)

  47. Tao, J., Yang, D., Yuan, W.: Vanishing John-Nirenberg spaces. Adv. Calc. Var. 15(4), 813–861 (2022)

    Google Scholar 

  48. Tao, J., Yang, D., Yuan, W.: A survey on several spaces of John–Nirenberg-type. Mathematics 9(18), Art. 2264 (2021). https://doi.org/10.3390/math9182264

Download references

Acknowledgements

This project is supported by the National Key Research and Development Program of China (Grant No. 2020YFA0712900) and the National Natural Science Foundation of China (Grant Nos. 11971058, 12071197 and 12122102). The authors would like to thank both referees for their carefully reading and several useful comments which definitely improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this article.

Corresponding author

Correspondence to Dachun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1080 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Tao, J., Yang, D. et al. Boundedness of fractional integrals on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes. Fract Calc Appl Anal 25, 2446–2487 (2022). https://doi.org/10.1007/s13540-022-00095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00095-3

Keywords

Mathematics Subject Classification

Navigation