Skip to main content
Log in

Imaginary Powers of (k, 1)-Generalized Harmonic Oscillator

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we will define and investigate the imaginary powers \((-\triangle _{k,1})^{-i\sigma },\sigma \in {\mathbb {R}}\) of the (k, 1)-generalized harmonic oscillator \(-\triangle _{k,1}=-\left\| x\right\| \triangle _k+\left\| x\right\| \) and prove the \(L^p\)-boundedness \((1<p<\infty )\) and weak \(L^1\)-boundedness of such operators. It is a parallel result to the \(L^p\)-boundedness \((1<p<\infty )\) and weak \(L^1\)-boundedness of the imaginary powers of the Dunkl harmonic oscillator \(-\triangle _k+\left\| x\right\| ^2\). To prove this result, we develop the Calderón–Zygmund theory adapted to the (k, 1)-generalized setting by constructing the metric space of homogeneous type corresponding to the (k, 1)-generalized setting, and show that \(\left( -\triangle _{k,1}\right) ^{-i\sigma }\) are singular integral operators satisfying the corresponding Hörmander type condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amri, B.: Riesz Transforms for Dunkl Hermite Expansions. J. Math. Anal. Appl. 423(1), 646–659 (2015)

    Article  MathSciNet  Google Scholar 

  2. Amri, B., Sifi, M.: Riesz transforms for the Dunkl transform. Ann. Math. Blaise Pascal 19(1), 247–262 (2012)

    Article  MathSciNet  Google Scholar 

  3. Ben Saïd, S., Deleaval, L.: Translation Operator and Maximal Function for the \((k,1)\)-Generalized Fourier Transform. J. Funct. Anal 279(8), 108706 (2020)

    Article  MathSciNet  Google Scholar 

  4. Ben Saïd, S., Deleaval, L.: A Hardy-Littlewood Maximal Operator for the Generalized Fourier Transform on \({\mathbb{R}}\). J. Geom. Anal 30, 2273–2289 (2020)

    Article  MathSciNet  Google Scholar 

  5. Ben Saïd, S., Kobayashi, T., Ørsted, B.: Laguerre semigroup and Dunkl operators. Compos. Math. 148(4), 1265–1336 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 42–517 (1999)

    Article  MathSciNet  Google Scholar 

  7. Constales, D., De Bie, H., Lian, P.: Explicit formulas for the Dunkl dihedral kernel and the \((k, a)\)-generalized Fourier kernel. J. Math. Anal. Appl. 460(2), 900–926 (2018)

    Article  MathSciNet  Google Scholar 

  8. Coifman, R.R., Weiss, G.: Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes. Springer, Berlin Heidelberg (1971)

    Book  Google Scholar 

  9. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311(1), 167–183 (1989)

    Article  MathSciNet  Google Scholar 

  10. Dunkl, C.F.: Integral kernels with reflection group invariance. Canadian. J. Math 43, 1213–1227 (1991)

    Article  MathSciNet  Google Scholar 

  11. Gallardo, L., Rejeb, C.: Support properties of the intertwining and the mean value operators in Dunkl theory. Proceedings of the American Mathematical Society 146(1), 1 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gorbachev, D., Ivanov, V., Tikhonov, S.: Pitt’s inequalities and uncertainty principle for generalized Fourier transform. International Mathematics Research Notices, Issue 23, 7179–7200 (2016)

  13. Howe, R.: The oscillator semigroup. The mathematical heritage of Hermann Weyl (Durham, NC, 1987), 61–132, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, (1988)

  14. Kobayashi, T., Mano, G.: The inversion formula and holomorphic extension of the minimal representation of the conformal group, Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory: In honor of Roger Howe, (eds. J. S. Li, E. C. Tan, N. Wallach and C. B. Zhu), World Scientific, 159–223 (2007)

  15. Kobayashi, T., Mano, G.: The Schrödinger Model for the Minimal Representation of the Indefinite Orthogonal Group \(O(p,q)\). Memoirs of the American Mathematical Society, vol. 213 (1000) (2011)

  16. Nowak, A., Stempak, K.: Riesz Transforms for the Dunkl Harmonic Oscillator. Mathematische Zeitschrift 262(3), 539–556 (2009)

    Article  MathSciNet  Google Scholar 

  17. Nowak, A., Stempak, K.: Imaginary Powers of the Dunkl Harmonic Oscillator. Symmetry Integrability and Geometry-Methods and Applications 5, 16 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192(3), 519–542 (1998)

    Article  MathSciNet  Google Scholar 

  19. Rösler, M.: Positivity of Dunkl’s intertwining operator. Duke Mathematical Journal 98(3), 445–463 (1999)

    Article  MathSciNet  Google Scholar 

  20. Stempak, K., Torrea, J.L.: Higher Riesz Transforms and Imaginary Powers Associated to the Harmonic Oscillator. Acta Mathematica Hungarica 111(1), 43–64 (2006)

    Article  MathSciNet  Google Scholar 

  21. Teng, W.: Dunkl translations, Dunkl-type BMO space and Riesz transforms for the Dunkl transform on \(L^\infty \). Funct Anal Its Appl 55, 304–315 (2021)

    Article  MathSciNet  Google Scholar 

  22. Teng, W.: Hardy Inequalities for Fractional \((k,a)\)-Generalized Harmonic Oscillator. ArXiv Preprint arXiv:2008.00804, (2020)

  23. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  24. Wong, J. S.W.: Remarks on Metric Spaces, Indagationes Mathematicae (Proceedings), Volume 69, 70–73 (1966)

Download references

Acknowledgements

The author would like to thank his adviser Nobukazu Shimeno for valuable comments and advice. All data included in this study are available upon request by contact with the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Teng.

Additional information

Communicated by Palle Gorgenson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Harmonic Analysis and Operator Theory” edited by H. Turgay Kaptanoglu, Andreas Seeger, Franz Luef and Serap Oztop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, W. Imaginary Powers of (k, 1)-Generalized Harmonic Oscillator. Complex Anal. Oper. Theory 16, 89 (2022). https://doi.org/10.1007/s11785-022-01249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01249-0

Keywords

Mathematics Subject Classification

Navigation