Skip to main content
Log in

A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new parallel iterative method for finding a common solution of the multiple-set split feasibility and fixed point problems concerning left Bregman strongly nonexpansive mappings in Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alber, Y. I.: Metric and generalized projections in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type vol 178 of Lecture Notes in Pure and Applied Mathematics (pp. 15–50), USA, Dekker, New York, NY (1996)

  2. Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator in Banach spaces. Panamer. Math. J. 4, 39–54 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert space. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic, Dordrecht (1993)

    Book  MATH  Google Scholar 

  5. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5, 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burachik, R.S., Svaiter, B.F.: \(\varepsilon \)-Enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. 7, 117–132 (1999)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2–4), 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37, 323–339 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  18. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99(2), 299–306 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28. Cambridge Univ. Press, Cambridge (1990)

  20. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  21. Martin-Marquez, V., Reich, S., Sabach, S.: Bregman strongly nonexpansive operators in reflexive Banach spaces. J. Math. Anal. Appl. 400, 597–614 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  25. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313–318 . Marcel Dekker, New York (1996)

  26. Schopfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24, 055008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15, 1349–1355 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16, 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2), 281–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  34. Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, F.: A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces. Numer. Funct. Anal. Optim. 35, 99–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and the editor for their valuable comments and suggestions, which helped to improve this paper. The first author was supported by the Science and Technology Fund of the Vietnam Ministry of Education and Training (B 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Minh Tuyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuyen, T.M., Ha, N.S. A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces. J. Fixed Point Theory Appl. 20, 140 (2018). https://doi.org/10.1007/s11784-018-0622-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0622-6

Keywords

Mathematics Subject Classification

Navigation