Skip to main content
Log in

Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alhaji M H, Sanaullah K, Salleh S F, Baini R, Lim S F, Rigit A R H, Said K A M, Khan A (2018). Photo-oxidation of pre-treated palm oil mill effluent using cylindrical column immobilized photoreactor. Process Safety and Environmental Protection, 117: 180–189

    Article  CAS  Google Scholar 

  • Ariyanti D, Mills L, Dong J, Yao Y, Gao W (2017). NaBH4 modified TiO2: defect site enhancement related to its photocatalytic activity. Materials Chemistry and Physics, 199: 571–576

    Article  CAS  Google Scholar 

  • Bakbolat B, Daulbayev C, Sultanov F, Beissenov R, Umirzakov A, Mereke A, Bekbaev A, Chuprakov I (2020). Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review. Nanomaterials (Basel, Switzerland), 10(9): 1790

    Article  CAS  Google Scholar 

  • Balachandran U, Eror N (1988). Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures. Journal of Materials Science, 23(8): 2676–2682

    Article  CAS  Google Scholar 

  • Bharti B, Kumar S, Lee H N, Kumar R (2016). Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports, 6(1): 32355

    Article  CAS  Google Scholar 

  • Billo T, Fu F Y, Raghunath P, Shown I, Chen W F, Lien H T, Shen T H, Lee J F, Chan T S, Huang K Y, et al. (2018). Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Nano. Micro. Small, 14(2): 1702928

    Article  Google Scholar 

  • Charles A, Cheng C K (2019). Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: effects of catalyst preparation technique. Journal of Environmental Management, 234: 404–411

    Article  CAS  Google Scholar 

  • Chen S, Wang Y, Li J, Hu Z, Zhao H, Xie W, Wei Z (2018). Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing. Materials Research Bulletin, 98: 280–287

    Article  CAS  Google Scholar 

  • Chen X, Liu L, Huang F (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7): 1861–1885

    Article  CAS  Google Scholar 

  • Cheng C K, Derahman M R, Khan M R (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1): 261–270

    Article  CAS  Google Scholar 

  • Cheng C K, Deraman M R, Ng K H, Khan M R (2016). Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation. Journal of Cleaner Production, 112: 1128–1135

    Article  CAS  Google Scholar 

  • Diebold U (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5–8): 53–229

    Article  CAS  Google Scholar 

  • Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79: 128–146

    Article  CAS  Google Scholar 

  • Eom J Y, Lim S J, Lee S M, Ryu W H, Kwon H S (2015). Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(21): 11183–11188

    CAS  Google Scholar 

  • Ergül F E, Sargın S, Öngen G, Sukan F V (2011). Dephenolization and decolorization of olive mill wastewater through sequential batch and co-culture applications. World Journal of Microbiology & Biotechnology, 27(1): 107–114

    Article  Google Scholar 

  • Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008). Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+ U, and hybrid DFT calculations. Journal of Chemical Physics, 129(15): 154113

    Article  Google Scholar 

  • Fuentes K M, Venuti D, Betancourt P (2020). Black titania with increased defective sites for phenol photodegradation under visible light. Reaction Kinetics, Mechanisms and Catalysis, 131(1): 423–435

    Article  CAS  Google Scholar 

  • Gaya U I, Abdullah A H (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 9(1): 1–12

    Article  CAS  Google Scholar 

  • Gregg S J, Sing K S, Salzberg H W (1967). Adsorption surface area and porosity. Journal of the Electrochemical Society, 11: 279Ca

    Article  Google Scholar 

  • Harris L, Schumacher R (1980). The influence of preparation on semiconducting rutile (TiO2). Journal of the Electrochemical Society, 127(5): 1186–1188

    Article  CAS  Google Scholar 

  • Henderson M A (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66(6–7): 185–297

    Article  CAS  Google Scholar 

  • Henderson M A, Epling W S, Peden C H, Perkins C L (2003). Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110). Journal of Physical Chemistry B, 107(2): 534–545

    Article  CAS  Google Scholar 

  • Hu H, Lin Y, Hu Y H (2019). Synthesis, structures and applications of single component core-shell structured TiO2: a review. Chemical Engineering Journal, 375: 122029

    Article  CAS  Google Scholar 

  • Hu H, Lin Y, Hu Y H (2020). Core-shell structured TiO2 as highly efficient visible light photocatalyst for dye degradation. Catalysis Today, 341: 90–95

    Article  CAS  Google Scholar 

  • Ilie A G, Scarisoareanu M, Morjan I, Dutu E, Badiceanu M, Mihailescu I (2017). Principal component analysis of Raman spectra for TiO2 nanoparticle characterization. Applied Surface Science, 417: 93–103

    Article  CAS  Google Scholar 

  • Irfan M, Nawaz R, Khan J A, Ullah H, Haneef T, Legutko S, Rahman S, Józwik J, Alsaiari M A, Khan M K A, et al. (2021). Synthesis and characterization of manganese-modified black TiO2 nanoparticles and their performance evaluation for the photodegradation of phenolic compounds from wastewater. Materials, 14: 7422

    Article  CAS  Google Scholar 

  • Jay L, Chirwa E (2018). Pathway analysis of phenol degradation by UV/TiO2 photocatalysis utilising the C-13 isotopic labelling technique. Dissertation for Doctoral Degree. Pretoria. South Africa: University of Pretoria

    Google Scholar 

  • Kashif N, Ouyang F (2009). Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Sciences-China, 21(4): 527–533

    Article  CAS  Google Scholar 

  • Katryniok B, Paul S, Dumeignil F (2013). Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, 3(8): 1819–1834

    Article  CAS  Google Scholar 

  • Konwar L J, Mikkola J P, Bordoloi N, Saikia R, Chutia R S, Kataki R (2018). Sidestreams from bioenergy and biorefinery complexes as a resource for circular bioeconomy. In: Bhaskar T, Pandey A, Mohan S V, Lee D J, Khanal S K, Editors. Waste Biorefinery. Amsterdam, Netherlands: Elsevier, 85–125

    Chapter  Google Scholar 

  • Lin C, Lin K S (2007). Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere, 66(10): 1872–1877

    Article  CAS  Google Scholar 

  • Lin L, Ma Y, Wu J, Pang F, Ge J, Sui S, Yao Y, Qi R, Cheng Y, Duan C G, Chu J, Huang R (2019). Origin of photocatalytic activity in Ti4+/Ti3+ core-shell titanium oxide nanocrystals. Journal of Physical Chemistry C, 123(34): 20949–20959

    Article  CAS  Google Scholar 

  • Liu G, Yan X, Chen Z, Wang X, Wang L, Lu G Q, Cheng H M (2009). Synthesis of rutile-anatase core—shell structured TiO2 for photocatalysis. Journal of Materials Chemistry, 19(36): 6590–6596

    Article  CAS  Google Scholar 

  • Lyu J, Shao J, Wang Y, Qiu Y, Li J, Li T, Peng Y, Liu F (2019). Construction of a porous core-shell homojunction for the photocatalytic degradation of antibiotics. Chemical Engineering Journal, 358: 614–620

    Article  CAS  Google Scholar 

  • Minero C, Vione D (2006). A quantitative evalution of the photocatalytic performance of TiO2 slurries. Applied Catalysis B: Environmental, 67(3–4): 257–269

    Article  CAS  Google Scholar 

  • Nawaz R, Haider S, Ullah H, Akhtar M S, Khan S, Junaid M, Khan N (2022). Optimized remediation of treated agro-industrial effluent using visible light-responsive core-shell structured black TiO2 photocatalyst. Journal of Environmental Chemical Engineering, 10(1): 106968

    Article  CAS  Google Scholar 

  • Nawaz R, Kait C F, Chia H Y, Isa M H, Huei L W (2019). Glycerol-mediated facile synthesis of colored titania nanoparticles for visible light photodegradation of phenolic compounds. Nanomaterials (Basel, Switzerland), 9(11): 1586

    Article  CAS  Google Scholar 

  • Nawaz R, Kait C F, Chia H Y, Isa M H, Huei L W (2020a). Structural elucidation of core-shell TiO2 nanomaterials for environmental pollutants removal: a focused mini review. Environmental Technology & Innovation, 19: 101007

    Article  Google Scholar 

  • Nawaz R, Kait C F, Chia H Y, Isa M H, Huei L W (2020b). Photocatalytic remediation of treated palm oil mill effluent contaminated with phenolic compounds using TiO2 nanomaterial. Desalination and Water Treatment, 183: 355–365

    Article  CAS  Google Scholar 

  • Negi C, Kandwal P, Rawat J, Sharma M, Sharma H, Dalapati G, Dwivedi C (2021). Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Applied Surface Science, 554: 149553

    Article  CAS  Google Scholar 

  • Ng K H, Cheng C K (2015). A novel photomineralization of POME over UV-responsive TiO2 photocatalyst: kinetics of POME degradation and gaseous product formations. RSC Advances, 5(65): 53100–53110

    Article  CAS  Google Scholar 

  • Ng K H, Khan M R, Ng Y H, Hossain S S, Cheng C K (2017). Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO2 and UV/ZnO Photocatalytic systems: a comparative study. Journal of Environmental Management, 196: 674–680

    Article  CAS  Google Scholar 

  • Ng K H, Lee C H, Khan M R, Cheng C K (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 286: 282–290

    Article  CAS  Google Scholar 

  • Ng K H, Yuan L S, Cheng C K, Chen K, Fang C (2019). TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. Journal of Cleaner Production, 233: 209–225

    Article  CAS  Google Scholar 

  • Nowotny J, Bak T, Nowotny M, Sheppard L (2006). TiO2 surface active sites for water splitting. Journal of Physical Chemistry B, 110(37): 18492–18495

    Article  CAS  Google Scholar 

  • Oladipo A A (2021). Rapid photocatalytic treatment of high-strength olive mill wastewater by sunlight and UV-induced CuCr2O4@CaFe—LDO. Journal of Water Process Engineering, 40: 101932

    Article  Google Scholar 

  • Parent Y, Blake D, Magrini-bair K, Lyons C, Turchi C, Watt A, Wolfrum E, Prairie M (1996). Solar photocatalytic processes for the purification of water: state of development and barriers to commercialization. Solar Energy, 56(5): 429–437

    Article  CAS  Google Scholar 

  • Porter J F, Li Y G, Chan C K (1999). The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. Journal of Materials Science, 34(7): 1523–1531

    Article  CAS  Google Scholar 

  • Ren T Z, Yuan Z Y, Su B L (2003). Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chemical Physics Letters, 374(1–2): 170–175

    Article  CAS  Google Scholar 

  • Shi J, Li J, Wang Y, Zhang C Y (2022). TiO2-based nanosystem for cancer therapy and antimicrobial treatment: a review. Chemical Engineering Journal, 431: 133714

    Article  CAS  Google Scholar 

  • Shvab R, Hryha E, Nyborg L (2017). Surface chemistry of the titanium powder studied by XPS using internal standard reference. Powder Metallurgy, 60(1): 42–48

    Article  CAS  Google Scholar 

  • Sinhamahapatra A, Jeon J P, Yu J S (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 8(12): 3539–3544

    Article  CAS  Google Scholar 

  • Sobczyński A, Duczmal L, Zmudziński W (2004). Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. Journal of Molecular Catalysis A, Chemical, 213(2): 225–230

    Article  Google Scholar 

  • Sun L, Li Z, Li Z, Hu Y, Chen C, Yang C, Du B, Sun Y, Besenbacher F, Yu M (2017). Design and mechanism of core—shell TiO2 nanoparticles as a high-performance photothermal agent. Nanoscale, 9(42): 16183–16192

    Article  CAS  Google Scholar 

  • Taha M, Ibrahim A (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering, 2(1): 1–8

    Article  CAS  Google Scholar 

  • Tan Y, Goh P, Lai G, Lau W, Ismail A (2014). Treatment of aerobic treated palm oil mill effluent (AT-POME) by using TiO2 photocatalytic process. Jurnal Teknologi-Sciences & Engineering, 70: 61–63

    Google Scholar 

  • Tian J, Hu X, Yang H, Zhou Y, Cui H, Liu H (2016). High yield production of reduced TiO2 with enhanced photocatalytic activity. Applied Surface Science, 360: 738–743

    Article  CAS  Google Scholar 

  • Tian J, Leng Y, Cui H, Liu H (2015). Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. Journal of Hazardous Materials, 299: 165–173

    Article  CAS  Google Scholar 

  • Ullattil S G, Periyat P (2016). A ‘one pot’ gel combustion strategy towards Ti3+ self-doped ‘black’ anatase TiO2−x solar photocatalyst. Journal of Materials Chemistry. A, 4(16): 5854–5858

    CAS  Google Scholar 

  • Wagner W, Averback R, Hahn H, Petry W, Wiedenmann A (1991). Sintering characteristics of nanocrystalline TiO2: a study combining small angle neutron scattering and nitrogen absorption—BET. Journal of Materials Research, 6(10): 2193–2198

    Article  CAS  Google Scholar 

  • Wang J, Wang Y, Wang W, Peng T, Liang J, Li P, Pan D, Fan Q, Wu W (2020). Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environmental Pollution, 262: 114373

    Article  CAS  Google Scholar 

  • Wong K A, Lam S M, Sin J C (2019). Wet chemically synthesized ZnO structures for photodegradation of pre-treated palm oil mill effluent and antibacterial activity. Ceramics International, 45(2): 1868–1880

    Article  CAS  Google Scholar 

  • Wu M C, Chen C H, Huang W K, Hsiao K C, Lin T H, Chan S H, Wu P Y, Lu C F, Chang Y H, Lin T F, Hsu K H, Hsu J F, Lee K M, Shyue J J, Kordás K, Su W F (2017). Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO2 nanofibers with core-shell structure. Scientific Reports, 7(1): 40896

    Article  CAS  Google Scholar 

  • Xu J, Liu Z, Wang J, Liu P, Ahmad M, Zhang Q, Zhang B (2022). Preparation of core-shell C@ TiO2 composite microspheres with wrinkled morphology and its microwave absorption. Journal of Colloid and Interface Science, 607: 1036–1049

    Article  CAS  Google Scholar 

  • Zhai M, Liu Y, Huang J, Wang Y, Chen K, Fu Y, Li H (2019). Efficient suspension plasma spray fabrication of black titanium dioxide coatings with visible light absorption performances. Ceramics International, 45(1): 930–935

    Article  CAS  Google Scholar 

  • Zhang L, Djellabi R, Su P, Wang Y, Zhao J (2023). Through converting the surface complex on TiO2 nanorods to generate superoxide and singlet oxygen to remove CN. Journal of Environmental Sciences-China, 124: 300–309

    Article  Google Scholar 

  • Zhou G, Shen L, Xing Z, Kou X, Duan S, Fan L, Meng H, Xu Q, Zhang X, Li L, Zhao M, Mi J, Li Z (2017). Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 505: 1031–1038

    Article  CAS  Google Scholar 

  • Zulfiqar M, Samsudin M F R, Sufian S (2019). Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: an insight into response surface methodology and artificial neural network. Journal of Photochemistry and Photobiology A, Chemistry, 384: 112039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate funding from Researchers Supporting Project number (RSP2023R399), King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajjad Haider or Rab Nawaz.

Additional information

Author Credit Statement

Sajjad Haider: Conceptualization, Funding acquisition, Data curation, Project administration, Supervision, Resources, Writing-Reviewing and Editing. Rab Nawaz: Conceptualizotion, Methodology, Investigations, Formal analysis, Visualization, Writing-Original draft preparation, Writing-Reviewing and Editing. Mnzammil Anjum: Supervision; Writing-Reviewing and Editing. Tahir Haneef: Investigations; Writing-Reviewing and Editing. Vipin Kumar Oad: Investigation; Methodology; Writing-Reviewing and Editing. Salah Uddinkhan: Formal analysis, Writing-Reviewing and Editing. Rawaiz Khan: Investigations, Writing- Reviewing and Editing. Muhammad Aqif: Writing-Reviewing and Editing.

Highlights

• Properties and performance relationship of CSBT photocatalyst were investigated.

• Properties of CSBT were controlled by simply manipulating glycerol content.

• Performance was linked to semiconducting and physicochemical properties.

• CSBT (W:G ratio 9:1) had better performance with lower energy consumption.

• Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S., Nawaz, R., Anjum, M. et al. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation. Front. Environ. Sci. Eng. 17, 111 (2023). https://doi.org/10.1007/s11783-023-1711-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1711-3

Keywords

Navigation