Skip to main content
Log in

Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity of polycrystalline titanium dioxide prepared by a liquid mix technique was measured for the oxygen partial pressure range of 10° to 10−19 atm and temperature range of 850 to 1050° C. The data were found to be proportional to the −1/6 power of oxygen partial pressure for the oxygen pressure range 10−19 to 10−15 atm, and proportional to \(P_{{\text{O}}_2 }^{ - 1/4}\)for the oxygen pressure range >10−15 atm. The region of linearity where the electrical conductivity varied as the −1/4 power of \(P_{{\text{O}}_2 }\)increased as the temperature was decreased. There was evidence of p-type behaviour for \(P_{{\text{O}}_2 } > 10^{ - 2}\)atm in the temperature range 950 to 850° C, although the measured data were insufficient to assign a pressure dependence. Electrical conductivity minima in the log σ against log \(P_{{\text{O}}_2 }\)plot moved to lower \(P_{{\text{O}}_2 }\)as the temperature was decreased in the range 950 to 850° C. The measured oxygen pressure dependence of electrical conductivity in the lowest \(P_{{\text{O}}_2 }\)region supports the oxygen vacancy defect model. The observed data are consistent with the presence of very small amounts of acceptor impurities. A binding energy of ∼ 0.67 eV between the acceptor impurity and its compensating oxygen vacancy was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Bull. Chem. Soc. Jpn 24 (1971) 1148.

    Google Scholar 

  2. P. Kofstad, J. Less-Common Metals 13 (1967) 635.

    Google Scholar 

  3. L. N. Shen, O. W. Johnson, W. D. Ohlsen and J. W. DeFord, Phys. Rev. B10 (1974) 1823.

    Google Scholar 

  4. C. Picard and P. Gerdanian, J. Solid State Chem. 14 (1975) 66.

    Google Scholar 

  5. P. H. Odier, J. F. Baumard, D. Panis and A. M. Anthony, ibid. 12 (1975) 324.

    Google Scholar 

  6. P. Kofstad, J. Phys. Chem. Solids 23 (1962) 1579.

    Google Scholar 

  7. K. S. Forland, Acta Chem. Scand. 18 (1964) 1267.

    Google Scholar 

  8. J. B. Moser, R. N. Blumenthal and D. H. Whitmore, J. Amer. Ceram. Soc. 48 (7) (1965) 384.

    Google Scholar 

  9. D. S. Tannhauser, Solid State Commun. 1 (1963) 223.

    Google Scholar 

  10. R. N. Blumenthal, J. Coburn, J. Baukus and W. M. Hirthe, J. Phys. Chem. Solids 27 (1966) 643.

    Google Scholar 

  11. Y. Yahia, Phys. Rev. 130 (1963) 1711.

    Google Scholar 

  12. J. F. Marucco, J. Gautron and P. Lemasson, J. Phys. Chem. Solids 42 (1981) 363.

    Google Scholar 

  13. R. N. Blumenthal, J. Baukus and W. M. Hirthe, J. Electrochem. Soc. 114 (1967) 172.

    Google Scholar 

  14. F. A. Grant, Rev. Mod. Phys. 31 (1959) 646.

    Google Scholar 

  15. R. G. Breckenridge and W. R. Hosler, Phys. Rev. 91 (1953) 793.

    Google Scholar 

  16. J. F. Baumard, D. Panis and D. Ruffier, Rev. Int. Hautes Temp. Refract. 12 (1975) 321.

    Google Scholar 

  17. J. F. Baumard and E. Tani, J. Chem. Phys. 67 (1977) 857.

    Google Scholar 

  18. E. Tani and J. F. Baumard, J. Solid State Chem. 32 (1980) 105.

    Google Scholar 

  19. J. Rudolph, Z. Naturforsch. 14A (1959) 727.

    Google Scholar 

  20. R. N. Blumenthal and D. H. Whitmore, J. Electrochem. Soc. 110 (1963) 92.

    Google Scholar 

  21. J. S. Anderson and A. S. Khan, J. Less-Common Metals 22 (1970) 219.

    Google Scholar 

  22. R. T. Dirstine and C. J. Ross, Z. Metallkde 70 (1979) 322.

    Google Scholar 

  23. C. B. Alcock, S. Zador and B. C. H. Steele, in “Electromotive Force Measurements in High Temperature Systems”, edited by C. B. Alcock (Institute of Mining and Metallurgy, London, 1968) p. 176.

    Google Scholar 

  24. S. Andersson and L. Jahnberg, Arkiv. Kemi. 21 (1963) 413.

    Google Scholar 

  25. J. S. Anderson and B. G. Hyde, J. Phys. Chem. Solids 28 (1967) 1393.

    Google Scholar 

  26. U. Balachandran and N. G. Eror, J. Solid State Chem. 39 (1981) 351.

    Google Scholar 

  27. Idem, Mater. Res. Bull. 17 (1982) 151.

    Google Scholar 

  28. S. A. Long and R. N. Blumenthal, J. Amer. Ceram. Soc. 54 (11) (1971) 577.

    Google Scholar 

  29. N. H. Chan and D. M. Smyth, J. Electrochem. Soc. 123 (10) (1976) 1585.

    Google Scholar 

  30. N. G. Eror and D. M. Smyth, J. Solid State Chem. 24 (3, 4) (1978) 235.

    Google Scholar 

  31. L. C. Walters and R. E. Grace, J. Phys. Chem. Solids 28 (1967) 239.

    Google Scholar 

  32. U. Balachandran, B. Odekirk and N. G. Eror, J. Solid State Chem. 41 (1982) 185.

    Google Scholar 

  33. W. L. George and R. E. Grace, J. Phys. Chem. Solids 30 (1969) 881.

    Google Scholar 

  34. N. H. Chan, R. K. Sharma and D. M. Smyth, J. Amer. Ceram. Soc. 64 (9) (1981) 556.

    Google Scholar 

  35. U. Balachandran and N. G. Eror, J. Mater. Sci. 17 (1982).

  36. P. Kofstad, “Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides” (Wiley Interscience, New York, 1972) Chs 11–12.

    Google Scholar 

  37. N. G. Eror and U. Balachandran, J. Amer. Ceram. Soc. 65 (9) (1982) 426.

    Google Scholar 

  38. N. H. Chan, R. K. Sharma and D. M. Smyth, J. Electrochem. Soc. 128 (12) (1981) 1762.

    Google Scholar 

  39. A. Inoue and E. Iguchi, J. Phys. C: Solid State Phys. 12 (1979) 5157.

    Google Scholar 

  40. R. A. Perkins and R. A. Rapp, Met. Trans. 4 (1973) 193.

    Google Scholar 

  41. F. Beniene and R. Rokbani, J. Phys. Chem. Solids 36 (1975) 1151.

    Google Scholar 

  42. W. J. Minford and V. S. Stubican, J. Amer. Ceram. Soc. 57 [8] (1974) 363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, U., Eror, N.G. Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures. J Mater Sci 23, 2676–2682 (1988). https://doi.org/10.1007/BF00547436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547436

Keywords

Navigation