Skip to main content
Log in

A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The selective capture of copper from strongly acidic solutions is of vital importance from the perspective of sustainable development and environmental protection. Metal organic frameworks (MOFs) have attracted the interest of many scholars for adsorption due to their fascinating physicochemical characteristics, including adjustable structure, strong stability and porosity. Herein, pz-UiO-66 containing a pyrazine structure is successfully synthesized for the efficient separation of copper from strongly acidic conditions. Selective copper removal at low pH values is accomplished by using this material that is not available in previously reported metal—organic frameworks. Furthermore, the material exhibits excellent adsorption capacity, with a theoretical maximum copper uptake of 247 mg/g. As proven by XPS and FT-IR analysis, the coordination of pyrazine nitrogen atoms with copper ions is the dominant adsorption mechanism of copper by pz-UiO-66. This work provides an opportunity for efficient and selective copper removal under strongly acidic conditions, and promises extensive application prospects for the removal of copper in the treatment for acid metallurgical wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai K, Ruan C, Shen M, Lu L (2016). MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Advanced Functional Materials, 26(30): 5542–5549

    Article  CAS  Google Scholar 

  • Awual M R (2019). Novel ligand functionalized composite material for efficient copper (II) capturing from wastewater sample. Composites Part B: Engineering, 172: 387–396

    Article  CAS  Google Scholar 

  • Brady D C, Crowe M S, Turski M L, Hobbs G A, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell S L, Thiele D J, Counter C M (2014). Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 509(7501): 492–496

    Article  CAS  Google Scholar 

  • Bui N T, Kang H, Teat S J, Su G M, Pao C W, Liu Y S, Zaia E W, Guo J, Chen J L, Meihaus K R, Dun C, Mattox T M, Long J R, Fiske P, Kostecki R, Urban J J (2020). A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water. Nature Communications, 11(1): 1–12

    Article  Google Scholar 

  • Cao Y, Xiao W, Shen G, Ji G, Zhang Y, Gao C, Han L (2019). Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: competitive effects of ion exchange and precipitation. Bioresource Technology, 273: 70–76

    Article  CAS  Google Scholar 

  • Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 130(42): 13850–13851

    Article  Google Scholar 

  • Chen T, Liu F, Ling C, Gao J, Xu C, Li L, Li A (2013a). Insight into highly efficient coremoval of copper and p-nitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition. Environmental Science & Technology, 47(23): 13652–13660

    Article  CAS  Google Scholar 

  • Chen X, Chen A, Zhao Z, Liu X, Shi Y, Wang D (2013b). Removal of Cu from the nickel electrolysis anolyte using nickel thiocarbonate. Hydrometallurgy, 133: 106–110

    Article  CAS  Google Scholar 

  • Chen Y, Pan B, Li H, Zhang W, Lv L, Wu J (2010). Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environmental Science & Technology, 44(9): 3508–3513

    Article  CAS  Google Scholar 

  • Choudhary M, Kumar R, Neogi S (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu2+ and Ni2+ from water. Journal of Hazardous Materials, 392: 122441

    Article  CAS  Google Scholar 

  • Daliran S, Ghazagh-Miri M, Oveisi A R, Khajeh M, Navalón S, Âlvaro M, Ghaffari-Moghaddam M, Samareh Delarami H, García H (2020). A pyridyltriazol functionalized zirconium metal-organic framework for selective and highly efficient adsorption of palladium. ACS Applied Materials & Interfaces, 12(22): 25221–25232

    Article  CAS  Google Scholar 

  • Demiral H, Güngör C (2016). Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, 124: 103–113

    Article  CAS  Google Scholar 

  • Feng H, Li Y, Luo D, Tan G, Jiang J, Yuan H, Peng S, Qian D (2016). Novel visible-light-responding InVO4-Cu2O-TiO2 tarnary nanoheterostructure: preparation and photocatalytic characteristics. Chinese Journal of Catalysis, 37(6): 855–862

    Article  CAS  Google Scholar 

  • Fitzgerald D J (1998). Safety guidelines for copper in water. The American journal of clinical nutrition, 67(5 Suppl): 1098S–1102S

    Article  CAS  Google Scholar 

  • Hosseinpournajjar E, Kianfar A H, Dinari M (2022). Synthesizing and characterization of Cu(II) polymer complex: application for removing heavy metals from aqueous solutions. Journal of the Iranian Chemical Society, 19(5): 1963–1977

    Article  CAS  Google Scholar 

  • Irving H, Williams R J P (1953). The stability of transition-metal complexes. Journal of the Chemical Society (Resumed), 3192–3210

  • Jiang C, Wang X, Wang G, Hao C, Li X, Li T (2019). Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Composites Part B: Engineering, 169: 45–54

    Article  CAS  Google Scholar 

  • Kuz’min V I, Kuz’min D V (2014). Sorption of nickel and copper from leach pulps of low-grade sulfide ores using Purolite S930 chelating resin. Hydrometallurgy, 141: 76–81

    Article  Google Scholar 

  • Lee S, Barin G, Ackerman C M, Muchenditsi A, Xu J, Reimer J A, Lutsenko S, Long J R, Chang C J (2016). Copper capture in a thioether-functionalized porous polymer applied to the detection of Wilson’s disease. Journal of the American Chemical Society, 138(24): 7603–7609

    Article  CAS  Google Scholar 

  • Lin S, Kumar Reddy D H, Bediako J K, Song M H, Wei W, Kim J A, Yun Y S (2017). Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal-organic frameworks from strongly acidic solutions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(26): 13557–13564

    Article  CAS  Google Scholar 

  • Ma Y, Lu W, Han X, Chen Y, da Silva I, Lee D, Sheveleva A M, Wang Z, Li J, Li W, Fan M, Xu S, Tuna F, McInnes E J L, Cheng Y, Rudić S, Manuel P, Frogley M D, Ramirez-Cuesta A J, Schröder M, Yang S (2022). Direct observation of ammonia storage in UiO-66 incorporating Cu(II) binding sites. Journal of the American Chemical Society, 144(19): 8624–8632

    Article  CAS  Google Scholar 

  • Marcus Y (1988). Ionic radii in aqueous solutions. Chemical Reviews, 88(8): 1475–1498

    Article  CAS  Google Scholar 

  • Miniyar P B, Murumkar P R, Patil P S, Barmade M A, Bothara K G (2013). Unequivocal role of pyrazine ring in medicinally important compounds: a review. Mini reviews in medicinal chemistry, 13(11): 1607–1625

    Article  CAS  Google Scholar 

  • Park I, Tabelin C B, Jeon S, Li X, Seno K, Ito M, Hiroyoshi N (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219: 588–606

    Article  CAS  Google Scholar 

  • Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C (2018). A versatile MOF-based trap for heavy metal ion capture and dispersion. Nature Communications, 9(1): 1–9

    Article  Google Scholar 

  • Shao P, Liang D, Yang L, Shi H, Xiong Z, Ding L, Yin X, Zhang K, Luo X (2020). Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: quantitative comparison and mechanistic insight. Journal of Hazardous Materials, 387: 121676

    Article  CAS  Google Scholar 

  • Wang D B, Chen B H, Zhang B, Ma Y X (1997). XPS study of aroylhydrazones containing triazole and their chelates. Polyhedron, 16(15): 2625–2629

    Article  CAS  Google Scholar 

  • Wang L, Shi Y, Yao D, Pan H, Hou H, Chen J, Crittenden J C (2019). Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study. Chemical Engineering Journal, 366: 569–576

    Article  CAS  Google Scholar 

  • Wang N, Feng J, Yan W, Zhang L, Liu Y, Mu R (2022). Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: adsorption behaviors, sites and mechanisms. Frontiers of Environmental Science & Engineering, 16(8): 1–14

    Article  Google Scholar 

  • Xie L, Yu Z, Islam S M, Shi K, Cheng Y, Yuan M, Zhao J, Sun G, Li H, Ma S, Kanatzidis M G (2018). Remarkable acid stability of polypyrrole-MoS4: a highly selective and efficient scavenger of heavy metals over a wide pH range. Advanced Functional Materials, 28(20): 1800502

    Article  Google Scholar 

  • Xu M, Meng S S, Liang H, Gu Z Y (2020). A metal-organic framework with tunable exposed facets as a high-affinity artificial receptor for enzyme inhibition. Inorganic Chemistry Frontiers, 7(19): 3687–3694

    Article  CAS  Google Scholar 

  • Yao Z, Shao P, Fang D, Shao J, Li D, Liu L, Huang Y, Yu Z, Yang L, Yu K, Luo X (2022). Thiol-rich, porous carbon for the efficient capture of silver: understanding the relationship between the surface groups and transformation pathways of silver. Chemical Engineering Journal, 427: 131470

    Article  CAS  Google Scholar 

  • Yu H, Shao P, Fang L, Pei J, Ding L, Pavlostathis S G, Luo X (2019). Palladium ion-imprinted polymers with PHEMA polymer brushes: role of grafting polymerization degree in anti-interference. Chemical Engineering Journal, 359: 176–185

    Article  CAS  Google Scholar 

  • Zhang X, Tong S, Huang D, Liu Z, Shao B, Liang Q, Wu T, Pan Y, Huang J, Liu Y, Cheng M, Chen M (2021). Recent advances of Zr based metal organic frameworks photocatalysis: energy production and environmental remediation. Coordination Chemistry Reviews, 448: 214177

    Article  CAS  Google Scholar 

  • Zhang Y, Xie Z, Wang Z, Feng X, Wang Y, Wu A (2016). Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Transactions, 45(32): 12653–12660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52125002 and 51908270), the Natural Science Foundation of Jiangxi Province (No. 20212ACB213006), and the National Key Research and Development Program of China (No. 2019YFC1907900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Penghui Shao or Xubiao Luo.

Additional information

Highlights

• pz-UiO-66 was synthesized facilely by a solvothermal method.

• Efficient capture of copper from highly acidic solution was achieved by pz-UiO-66.

• pz-UiO-66 exhibited excellent selectivity and capacity for copper capture.

• Pyrazine-N in pz-UiO-66 was shown to be the dominant adsorption site.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Shao, P., Peng, M. et al. A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions. Front. Environ. Sci. Eng. 17, 33 (2023). https://doi.org/10.1007/s11783-023-1633-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1633-0

Keywords

Navigation