Skip to main content
Log in

Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Modification of electrode surface with carboxylic acid terminated alkanethiol self-assembled monolayers (SAMs) has been found to be an effective approach to improve the extracellular electron transfer (EET) of electrochemically active bacteria (EAB) on electrode surface, but the underlying mechanism behind such enhanced EET remains unclear. In this work, the gold electrodes modified by mercapto-acetic acid and mercaptoethylamine (Au-COOH, Au-NH2) were used as anodes in microbial electrolysis cells (MECs) inoculated with Geobacter sulfurreducens DL-1, and their electrochemical performance and the bacteria-electrode interactions were investigated. Results showed that the Fe(CN) 3–/4–6 redox reaction occurred on the Au-NH2 with a higher rate and a lower resistance than that on the Au or the Au-COOH. Both the MECs with the Au-COOH and Au-NH2 anodes exhibited a higher current density than that with a bare Au anode. The biofilm formed on the Au-COOH was denser than that on bare Au, while the biofilm on the Au-NH2 had a greater thickness, suggesting a critical role of direct EET in this system. This work suggests that functional groups such as–COOH and-NH2 could promote electrode performance by accelerating the direct EET of EAB on electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rittmann B E, Krajmalnik-Brown R, Halden R U. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews. Microbiology, 2008, 6(8): 604–612

    Article  CAS  Google Scholar 

  2. Ishii S, Suzuki S, Norden-Krichmar T M, Tenney A, Chain P S G, Scholz M B, Nealson K H, Bretschger O. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nature Communications, 2013, 4: 1601

    Article  Google Scholar 

  3. Yuan S J, Li W W, Cheng Y Y, He H, Chen J J, Tong Z H, Lin Z Q, Zhang F, Sheng G P, Yu H Q. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nature Protocols, 2014, 9(1): 112–119

    Article  CAS  Google Scholar 

  4. Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology, 2009, 7(5): 375–381

    Article  CAS  Google Scholar 

  5. Zang G L, Sheng G P, Tong Z H, Liu X W, Teng S X, LiWW, Yu H Q. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environmental Science & Technology, 2010, 44(7): 2715–2720

    Article  CAS  Google Scholar 

  6. Sun M, Zhang F, Tong Z H, Sheng G P, Chen Y Z, Zhao Y, Chen Y P, Zhou S Y, Liu G, Tian Y C, Yu H Q. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosensors & Bioelectronics, 2010, 26(2): 338–343

    Article  CAS  Google Scholar 

  7. Wang A J, Cheng H Y, Ren N Q, Cui D, Lin N,WuW M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science & Engineering, 2012, 6(4): 569–574

    Article  CAS  Google Scholar 

  8. Bond D R, Holmes D E, Tender L M, Lovley D R. Electrodereducing microorganisms that harvest energy from marine sediments. Science, 2002, 295(5554): 483–485

    Article  CAS  Google Scholar 

  9. Kouzuma A, Hashimoto K, Watanabe K. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiology Letters, 2012, 326(1): 91–98

    Article  CAS  Google Scholar 

  10. Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik- Brown R, Rittmann B E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 2010, 34(1): 3–17

    Article  CAS  Google Scholar 

  11. Liu H, Newton G J, Nakamura R, Hashimoto K, Nakanishi S. Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers. Angewandte Chemie International Edition, 2010, 49(37): 6596–6599

    Article  CAS  Google Scholar 

  12. Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3968–3973

    Article  CAS  Google Scholar 

  13. Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G,Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358–11363

    Article  CAS  Google Scholar 

  14. Huang Y X, Liu X W, Xie J F, Sheng G P, Wang G Y, Zhang Y Y, Xu A W, Yu H Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical communications (Cambridge, England), 2011, 47(20): 5795–5797

    Article  CAS  Google Scholar 

  15. Liu X W, Sun X F, Chen J J, Huang Y X, Xie J F, LiWW, Sheng G P, Zhang Y Y, Zhao F, Lu R, Yu H Q. Phenothiazine derivativeaccelerated microbial extracellular electron transfer in bioelectrochemical system. Scientific Reports, 2013, 3: 1616

    Google Scholar 

  16. Crittenden S R, Sund C J, Sumner J J. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir, 2006, 22(23): 9473–9476

    Article  CAS  Google Scholar 

  17. Lowy D A, Tender L M, Zeikus J G, Park D H, Lovley D R. Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. Biosensors & Bioelectronics, 2006, 21(11): 2058–2063

    Article  CAS  Google Scholar 

  18. Stams A J M, de Bok F A M, Plugge C M, van Eekert M H A, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 2006, 8(3): 371–382

    Article  CAS  Google Scholar 

  19. Tarlov M J, Bowden E F. Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes. Journal of the American Chemical Society, 1991, 113(5): 1847–1849

    Article  CAS  Google Scholar 

  20. Chen X, Ferrigno R, Yang J, Whitesides G M. Redox properties of cytochrome c adsorbed on self-sssembled monolayers: a probe for protein conformation and orientation. Langmuir, 2002, 18(18): 7009–7015

    Article  CAS  Google Scholar 

  21. Ostuni E, Chapman R G, Liang M N, Meluleni G, Pier G, Ingber D E, Whitesides G M. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir, 2001, 17(20): 6336–6343

    Article  CAS  Google Scholar 

  22. Wang G M, Qian F, Saltikov C, Jiao Y Q, Li Y. Microbial reduction of graphene oxide by Shewanella. Nano Research, 2011, 4(6): 563–570

    Article  CAS  Google Scholar 

  23. Richter H, McCarthy K, Nevin K P, Johnson J P, Rotello V M, Lovley D R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir, 2008, 24(8): 4376–4379

    Article  CAS  Google Scholar 

  24. Wang H T, Zhao H M, Quan X. Gold modified microelectrode for direct tetracycline detection. Frontiers of Environmental Science & Engineering, 2012, 6(3): 313–319

    Article  CAS  Google Scholar 

  25. Liu S Y, Liu G, Tian Y C, Chen Y P, Yu H Q, Fang F. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environmental Science & Technology, 2007, 41(15): 5447–5452

    Article  CAS  Google Scholar 

  26. Bain C D, Troughton E B, Tao Y T, Evall J, Whitesides G M, Nuzzo R G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989, 111(1): 321–335

    Article  CAS  Google Scholar 

  27. Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. 2nd ed. New York: Wiley, 2001

    Google Scholar 

  28. Khan M M T, Ista L K, Lopez G P, Schuler A J. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers. Environmental Science & Technology, 2011, 45(3): 1055–1060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yu, S., Li, J. et al. Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers. Front. Environ. Sci. Eng. 10, 531–538 (2016). https://doi.org/10.1007/s11783-015-0793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0793-y

Keywords

Navigation