Skip to main content
Log in

Effects of personal heating on thermal comfort: A review

个性化采暖对热舒适的影响: 综述

  • Building Thermal Environment and Energy Conservation
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Personal conditioning system (PCS) is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements. As a part of PCS, personal heating systems can maintain human thermal comfort in cold environments, which leads to their potential role of important heating mode in cold winter, especially in the Hot Summer and Cold Winter regions of China. In order to better promote the development and application of personal heating systems, this paper reviews the published studies. Personal heating systems can be divided into four types based on the mode of heat transfer: conductive, convective, radiative and combinative type. Characteristics of each category and respective devices are introduced. Furthermore, identifying the effects of personal heating on thermal comfort and the models for predicting or evaluating thermal comfort during local heating. This paper would provide users with a guideline for choosing suitable heating equipment during winter.

摘要

个性化空调因其同时具备节能潜力和满足个性化热舒适需求的能力而备受关注。作为个性化空 调的重要组成,个性化采暖能在寒冷环境中维持人体热舒适,因而具备成为冬季重要采暖方式的潜 力。为更好地促进个性化采暖的应用与发展,本文对现有研究成果进行了综述。将个性化采暖按其主 要的热量传递方式划分为传导式、对流式、辐射式和组合式四类。总结了各方式的原理、具体形式及 特点。比较了主要的三类(传导、对流和辐射)个性化采暖方式对热舒适影响的特点,并将其影响规律 定量化。总结和归纳了基于环境参数和生理参数的人体局部热舒适评价模型,同时为用户在冬季选择 合适的采暖设备提供了理论依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAVID J. Under floor air conditioning [J]. Journal of the Chartered Institution of Building Services, 1984, 8: 29–34.

    Google Scholar 

  2. SODEC F, CRAIG R. The underfloor air supply system—The European experience[J]. ASHRAE Transaction, 1990, 96: 690–695.

    Google Scholar 

  3. SODEC F. Air distribution systems report No. 3554A[R]. Aachen, West Germany: Krantz GmbH&Co, 1984.

    Google Scholar 

  4. BARKER C, ANTHONY G, WATERS R, et al. Lloyd’s of London, air conditioning: Impact on the built environment [M]. New York: Nichols Publishing Company, 1987.

    Google Scholar 

  5. van HOOF J. Forty years of Fanger’s model of thermal comfort: Comfort for all? [J]. Indoor Air, 2008, 18(3): 182–201. DOI:https://doi.org/10.1111/j.1600-0668.2007.00516.x.

    Article  Google Scholar 

  6. HUIZENGA C, ABBASZADEH S, ZAGREUS L, et al. Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey [J]. Center for the Built Environment, 2006, 3: 393–397.

    Google Scholar 

  7. HOYT T, ARENS E, ZHANG Hui. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings [J]. Building and Environment, 2015, 88: 89–96. DOI: https://doi.org/10.1016/j.buildenv.2014.09.010.

    Article  Google Scholar 

  8. BAUMAN F, CARTER T, BAUGHMAN A. Field study of the impact of a desktop task/ambient conditioning system in office buildings 1998.

  9. ZHANG Hui, ARENS E, ZHAI Yong-chao. A review of the corrective power of personal comfort systems in non-neutral ambient environments [J]. Building and Environment, 2015, 91: 15–41. DOI: https://doi.org/10.1016/j.buildenv.2015.03.013.

    Article  Google Scholar 

  10. SCHIAVON S, MELIKOV A K. Energy-saving strategies with personalized ventilation in cold climates [J]. Energy and Buildings, 2009, 41(5): 543–550. DOI: https://doi.org/10.1016/j.enbuild.2008.11.018.

    Article  Google Scholar 

  11. ZHANG Hui, ARENS E, TAUB M, et al. Using footwarmers in offices for thermal comfort and energy savings [J]. Energy and Buildings, 2015, 104: 233–243. DOI: https://doi.org/10.1016/j.enbuild.2015.06.086.

    Article  Google Scholar 

  12. LIU Hong, WU Yu-xin, LI Bai-zhan, et al. Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China [J]. Energy and Buildings, 2017, 140: 9–18. DOI: https://doi.org/10.1016/j.enbuild.2017.01.066.

    Article  Google Scholar 

  13. CUI Ying, DA Yan, CHEN C F. Exploring the factors and motivations influencing heating behavioral patterns and future energy use intentions in the hot summer and cold winter climate zone of China [J]. Energy and Buildings, 2017, 153: 99–110. DOI: https://doi.org/10.1016/j.enbuild.2017.07.068.

    Article  Google Scholar 

  14. SHAHZAD S, CALAUTIT J K, CALAUTIT K, et al. Advanced personal comfort system (APCS) for the workplace: A review and case study [J]. Energy and Buildings, 2018, 173: 689–709. DOI: https://doi.org/10.1016/j.enbuild.2018.02.008.

    Article  Google Scholar 

  15. GODITHI S B, SACHDEVA E, GARG V, et al. A review of advances for thermal and visual comfort controls in personal environmental control (PEC) systems [J]. Intelligent Buildings International, 2019, 11(2): 75–104. DOI: https://doi.org/10.1080/17508975.2018.1543179.

    Article  Google Scholar 

  16. WARTHMANN A, WÖLKI D, METZMACHER H, et al. Personal climatization systems—A review on existing and upcoming concepts [J]. Applied Sciences, 2018, 9(1): 35. DOI: https://doi.org/10.3390/app9010035.

    Article  Google Scholar 

  17. RAWAL R, SCHWEIKER M, KAZANCI O B, et al. Personal comfort systems: A review on comfort, energy, and economics [J]. Energy and Buildings, 2020, 214: 109858. DOI: https://doi.org/10.1016/j.enbuild.2020.109858.

    Article  Google Scholar 

  18. VESELÝ M, ZEILER W. Personalized conditioning and its impact on thermal comfort and energy performance—A review [J]. Renewable and Sustainable Energy Reviews, 2014, 34: 401–408. DOI: https://doi.org/10.1016/j.rser.2014.03.024.

    Article  Google Scholar 

  19. BROOKS J E, PARSONS K C. An ergonomics investigation into human thermal comfort using an automobile seat heated with encapsulated carbonized fabric (ECF) [J]. Ergonomics, 1999, 42(5): 661–673. DOI: https://doi.org/10.1080/001401399185379.

    Article  Google Scholar 

  20. YANG He-cheng, CAO Bin, ZHU Ying-xin. Study on the effects of chair heating in cold indoor environments from the perspective of local thermal sensation [J]. Energy and Buildings, 2018, 180: 16–28. DOI: https://doi.org/10.1016/j.enbuild.2018.09.003.

    Article  Google Scholar 

  21. ZHANG Y F, WYON D P, FANG L, et al. The influence of heated or cooled seats on the acceptable ambient temperature range [J]. Ergonomics, 2007, 50(4): 586–600. DOI: https://doi.org/10.1080/00140130601154921.

    Article  Google Scholar 

  22. DENG Qi-hong, WANG Run-huai, LI Yu-guo, et al. Human thermal sensation and comfort in a non-uniform environment with personalized heating [J]. Science of the Total Environment, 2017, 578: 242–248. DOI: https://doi.org/10.1016/j.scitotenv.2016.05.172.

    Article  Google Scholar 

  23. PASUT W, ZHANG Hui, ARENS E, et al. Effect of a heated and cooled office chair on thermal comfort [J]. HVAC&R Research, 2013, 19(5): 574–583. DOI: https://doi.org/10.1080/10789669.2013.781371.

    Google Scholar 

  24. PASUT W, ZHANG Hui, ARENS E, et al. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests [J]. Building and Environment, 2015, 84: 10–21. DOI: https://doi.org/10.1016/j.buildenv.2014.10.026.

    Article  Google Scholar 

  25. HE Ying-dong, WANG Xiang, LI Nian-ping, et al. Heating chair assisted by leg-warmer: A potential way to achieve better thermal comfort and greater energy conservation in winter [J]. Energy and Buildings, 2018, 158: 1106–1116. DOI: https://doi.org/10.1016/j.enbuild.2017.11.006.

    Article  Google Scholar 

  26. LUO Mao-hui, ARENS E, ZHANG Hui, et al. Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices [J]. Building and Environment, 2018, 143: 206–216. DOI: https://doi.org/10.1016/j.buildenv.2018.07.008.

    Article  Google Scholar 

  27. VESELÝ M, MOLENAAR P, VOS M, et al. Personalized heating-Comparison of heaters and control modes [J]. Building and Environment, 2017, 112: 223–232. DOI: https://doi.org/10.1016/j.buildenv.2016.11.036.

    Article  Google Scholar 

  28. CHOI K, CHUNG H, LEE B, et al. Clothing temperature changes of phase change material-treated warm-up in cold and warm environments [J]. Fibers and Polymers, 2005, 6(4): 343–347. DOI: https://doi.org/10.1007/BF02875673.

    Article  Google Scholar 

  29. SONG Wen-fang, WANG Fa-ming, ZHANG Cheng-jiao, et al. On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment [J]. Building and Environment, 2015, 94: 704–713. DOI: https://doi.org/10.1016/j.buildenv.2015.10.017.

    Article  Google Scholar 

  30. WANG Fa-ming, GAO Chuan-si, KUKLANE K, et al. A review of technology of personal heating garments [J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(3): 387–404. DOI: https://doi.org/10.1080/10803548.2010.11076854.

    Article  Google Scholar 

  31. MADSEN T. Individually controlled local heating [C]//Proceedings of Roomvent 2002. Copenhagen, 2002: 285–288.

  32. NEVES S F, COUTO S, CAMPOS J B L M, et al. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system [J]. Applied Thermal Engineering, 2015, 87: 491–498. DOI: https://doi.org/10.1016/j.applthermaleng.2015.05.035.

    Article  Google Scholar 

  33. WANG Deng-jia, CHEN Peng-hao, LIU Yan-feng, et al. Heat transfer characteristics of a novel sleeping bed with an integrated hot water heating system [J]. Applied Thermal Engineering, 2017, 113: 79–86. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.027.

    Article  Google Scholar 

  34. ZHUANG Zhi, LI Yu-guo, CHEN Bin, et al. Chinese Kang as a domestic heating system in rural Northern China—A review [J]. Energy and Buildings, 2009, 41(1): 111–119. DOI: https://doi.org/10.1016/j.enbuild.2008.07.013.

    Article  Google Scholar 

  35. LIN L Y, WANG Fa-ming, KUKLANE K, et al. A laboratory validation study of comfort and limit temperatures of four sleeping bags defined according to EN 13537 (2002) [J]. Applied Ergonomics, 2013, 44(2): 321–326. DOI: https://doi.org/10.1016/j.apergo.2012.09.001.

    Article  Google Scholar 

  36. SONG W F, ZHANG C J, LAI D D, et al. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet [J]. Scientific Reports, 2016, 6: 19326. DOI: https://doi.org/10.1038/srep19326.

    Article  Google Scholar 

  37. ZHANG Cheng-jiao, REN Chong-guang, LI Ying, et al. Designing a smart electrically heated sleeping bag to improve wearers’ feet thermal comfort while sleeping in a cold ambient environment [J]. Textile Research Journal, 2017, 87(10): 1251–1260. DOI: https://doi.org/10.1177/0040517516651104.

    Article  Google Scholar 

  38. UDAYRAJ, LI Zi-qi, KE Ying, et al. A study of thermal comfort enhancement using three energy-efficient personalized heating strategies at two low indoor temperatures [J]. Building and Environment, 2018, 143: 1–14. DOI: https://doi.org/10.1016/j.buildenv.2018.06.049.

    Article  Google Scholar 

  39. RANTANEN J, VUORELA T, KUKKONEN K, et al. Improving human thermal comfort with smart clothing [C]//2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236). Tucson, AZ, USA: IEEE, 2001: 795–800. DOI: https://doi.org/10.1109/ICSMC.2001.973012.

    Google Scholar 

  40. ZHANG Hui, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort [J]. Building and Environment, 2010, 45(2): 399–410. DOI: https://doi.org/10.1016/j.buildenv.2009.06.020.

    Article  Google Scholar 

  41. ZHANG Hui, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part II: Local comfort of individual body parts [J]. Building and Environment, 2010, 45(2): 389–398. DOI: https://doi.org/10.1016/j.buildenv.2009.06.015.

    Article  Google Scholar 

  42. ZHANG Hui, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part I: Local comfort of individual body parts [J]. Building and Environment, 2010, 45(2): 380–388. DOI: https://doi.org/10.1016/j.buildenv.2009.06.018.

    Article  Google Scholar 

  43. HUIZENGA C, ZHANG Hui, ARENS E, et al. Skin and core temperature response to partial- and whole-body heating and cooling [J]. Journal of Thermal Biology, 2004, 29(7–8): 549–558. DOI: https://doi.org/10.1016/j.jtherbio.2004.08.024.

    Article  Google Scholar 

  44. CHLUDZIŃSKA M, BOGDAN A. The effect of temperature and direction of airflow from the personalised ventilation on occupants’ thermal sensations in office areas [J]. Building and Environment, 2015, 85: 277–286. DOI: https://doi.org/10.1016/j.buildenv.2014.11.023.

    Article  Google Scholar 

  45. KACZMARCZYK J, MELIKOV A, SLIVA D. Effect of warm air supplied facially on occupants’ comfort [J]. Building and Environment, 2010, 45(4): 848–855. DOI: https://doi.org/10.1016/j.buildenv.2009.09.005.

    Article  Google Scholar 

  46. MELIKOV A, IVANOVA T, STEFANOVA G. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality [J]. Building and Environment, 2012, 47: 100–108. DOI: https://doi.org/10.1016/j.buildenv.2011.07.013.

    Article  Google Scholar 

  47. REN Yu-ting, LIN Duan-mu, QUAN Jin. Equivalent temperature based comfort zone study under task/ambient conditioning system [C]//The 14th International Conference of Indoor Air Quality and Climate. 2016: 1–9.

  48. KONG Meng, DANG T Q, ZHANG Jian-shun, et al. Micro-environmental control for efficient local heating: CFD simulation and manikin test verification [J]. Building and Environment, 2019, 147: 382–396. DOI: https://doi.org/10.1016/j.buildenv.2018.10.018

    Article  Google Scholar 

  49. ENOMOTO H, KUMAMOTO T, TOCHIHARA Y. Effects of lower body warming on physiological and psychological responses of humans [C]//3rd Int Conf Environ Ergon ICEE. 2009: 578.

  50. DU Chen-qiu, LIU Hong, LI Cai-jie, et al. Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments [J]. Building and Environment, 2020, 171: 106662. DOI: https://doi.org/10.1016/j.buildenv.2020.106662.

    Article  Google Scholar 

  51. JIN Quan, LI Xiang-li, LIN Duan-mu, et al. Predictive model of local and overall thermal sensations for non-uniform environments [J]. Building and Environment, 2012, 51: 330–344. DOI: https://doi.org/10.1016/j.buildenv.2011.12.005.

    Article  Google Scholar 

  52. JIN Quan, LIN Duan-mu, ZHANG Hui, et al. Thermal sensations of the whole body and head under local cooling and heating conditions during step-changes between workstation and ambient environment [J]. Building and Environment, 2011, 46(11): 2342–2350. DOI: https://doi.org/10.1016/j.buildenv.2011.05.017.

    Article  Google Scholar 

  53. YAMASHITA K, MATSUO J, TOCHIHARA Y, et al. Thermal sensation and comfort during exposure to local airflow to face or legs [J]. Journal of Physiological Anthropology and Applied Human Science, 2005, 24(1): 61–66. DOI: https://doi.org/10.2114/jpa.24.61.

    Article  Google Scholar 

  54. ZHANG Hui, ARENS E, KIM D, et al. Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system [J]. Building and Environment, 2010, 45(1): 29–39. DOI: https://doi.org/10.1016/j.buildenv.2009.02.016.

    Article  Google Scholar 

  55. de KORTE E M, KUIJT-EVERS L F M, SPIEKMAN M, et al. Evaluating comfort levels of a workstation with an individually controlled heating and lighting system [M]. Springer-Verlag, 2013: 213–222.

  56. YAN Jin-bo, LI Nian-ping, ZHOU Lin-xuan, et al. Influence of workstation radiant heating terminal on local and overall thermal sensation of human body [J]. Heating Ventilating & Air Conditioning, 2018, 48(8): 22–29.

    Google Scholar 

  57. de KORTE E M, SPIEKMAN M, HOES-VAN OEFFELEN L, et al. Personal environmental control: Effects of pre-set conditions for heating and lighting on personal settings, task performance and comfort experience [J]. Building and Environment, 2015, 86: 166–176. DOI: https://doi.org/10.1016/j.buildenv.2015.01.002.

    Article  Google Scholar 

  58. FODA E, SIRÉN K. Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control [J]. Energy and Buildings, 2012, 51: 111–121. DOI: https://doi.org/10.1016/j.enbuild.2012.04.019.

    Article  Google Scholar 

  59. ARENS E, ZHANG Hui, HUIZENGA C. Partial- and whole-body thermal sensation and comfort—Part I: Non-uniform environmental conditions [J]. Journal of Thermal Biology, 2006, 31: 53–59. DOI: https://doi.org/10.1016/j.jtherbio.2005.11.028.

    Article  Google Scholar 

  60. ARENS E, ZHANG Hui, HUIZENGA C. Partial- and whole-body thermal sensation and comfort—Part II: Non-uniform environmental conditions [J]. Journal of Thermal Biology, 2006, 31: 60–66. DOI: https://doi.org/10.1016/j.jtherbio.2005.11.027.

    Article  Google Scholar 

  61. LI N, YAN J, HE Y, et al. Analysis on thermal comfort and energy saving of the screen type radiant heating terminal [J]. Journal of Safety and Environment, 2018, 18: 2–8.

    Google Scholar 

  62. HE Ying-dong, LI Nian-ping, ZHANG Wen-jie, et al. Thermal comfort of sellers with a kind of traditional personal heating device (Huotong) in marketplace in winter [J]. Building and Environment, 2016, 106: 219–228. DOI: https://doi.org/10.1016/j.buildenv.2016.06.035.

    Article  Google Scholar 

  63. HE Ying-dong, LI Nian-ping, ZHOU Lin-xuan, et al. Thermal comfort and energy consumption in cold environment with retrofitted Huotong (warm-barrel) [J]. Building and Environment, 2017, 112: 285–295. DOI: https://doi.org/10.1016/j.buildenv.2016.11.044.

    Article  Google Scholar 

  64. MELIKOV A K, KNUDSEN G L. Human response to an individually controlled microenvironment [J]. HVAC&R Research, 2007, 13(4): 645–660. DOI: https://doi.org/10.1080/10789669.2007.10390977.

    Article  Google Scholar 

  65. WATANABE S, MELIKOV A K, KNUDSEN G L. Design of an individually controlled system for an optimal thermal microenvironment [J]. Building and Environment, 2010, 45(3): 549–558. DOI: https://doi.org/10.1016/j.buildenv.2009.07.009.

    Article  Google Scholar 

  66. TSUZUKI K, ARENS E A, BAUMAN F S, et al. Individual thermal comfort control with desk-mounted and floor-mounted task/ambient conditioning (TAC) systems [J]. Ensemble, 2013, 15: 250–260.

    Google Scholar 

  67. WANG Li-juan, TIAN Yu-fei, KIM J, et al. The key local segments of human body for personalized heating and cooling [J]. Journal of Thermal Biology, 2019, 81: 118–127. DOI: https://doi.org/10.1016/j.jtherbio.2019.02.013.

    Article  Google Scholar 

  68. WANG Li-juan, YIN Hui, DI Yu-hui, et al. Human local and total heat losses in different temperature [J]. Physiology & Behavior, 2016, 157: 270–276. DOI: https://doi.org/10.1016/j.physbeh.2016.02.018.

    Article  Google Scholar 

  69. OI H, YANAGI K, TABATA K, et al. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle [J]. Ergonomics, 2011, 54(8): 690–699. DOI: https://doi.org/10.1080/00140139.2011.595513.

    Article  Google Scholar 

  70. CHARKOUDIAN N. Skin blood flow in adult human thermoregulation: How it works, when it does not, and why [J]. Mayo Clinic Proceedings, 2003, 78(5): 603–612. DOI: https://doi.org/10.4065/78.5.603.

    Article  Google Scholar 

  71. MELIKOV A K, LANGKILDE G, RASMUSSEN L W. Human response to local heating for use in connection with low enthalpy ventilation [C]//Proceeding of Room Vent. 1998: 315–321.

  72. MELIKOV A K, LYUBENOVA V S, SKWARCZYNSKI M, et al. Impact of air temperature, relative humidity, air movement and pollution on eye blinking [C]//Proceeding of Indoor Air 2011. Austin, 2011: 970.

  73. YANG Yu, LI Bai-zhan, LIU Hong, et al. Experimental research of improvement on human comfort by warm airflow in cold environment [J]. Journal of Central South University (Science and Technology), 2012, 43(10): 4142–4147. (in Chinese)

    Google Scholar 

  74. PARKINSON T, de DEAR R. Thermal pleasure in built environments: Spatial alliesthesia from air movement [J]. Building Research & Information, 2017, 45(3): 320–335. DOI: https://doi.org/10.1080/09613218.2016.1140932.

    Article  Google Scholar 

  75. de DEAR R. Revisiting an old hypothesis of human thermal perception: Alliesthesia [J]. Building Research & Information, 2011, 39(2): 108–117. DOI: https://doi.org/10.1080/09613218.2011.552269.

    Article  Google Scholar 

  76. ATTIA M. Thermal pleasantness and temperature regulation in man [J]. Neuroscience & Biobehavioral Reviews, 1984, 8(3): 335–342. DOI: https://doi.org/10.1016/0149-7634(84)90056-3.

    Article  Google Scholar 

  77. CHENG Yuan-da, NIU Jian-lei, GAO Nai-ping. Thermal comfort models: A review and numerical investigation [J]. Building and Environment, 2012, 47: 13–22. DOI: https://doi.org/10.1016/j.buildenv.2011.05.011.

    Article  Google Scholar 

  78. ZHANG H. Human thermal sensation and comfort in transient and non-uniform thermal environments [D]. University of California at Berkeley, 2003: 415

  79. LI Jia, LI Nian-ping, HE Ying-dong, et al. Local thermal comfort with electric heating cushions and foot warmers [J]. Heating Ventilating & Air Conditioning, 2018, 48(8): 60–67.

    Google Scholar 

  80. TANAKA M, YAMAZAKI S, OHNAKA T, et al. Physiological reactions to different vertical (head-foot) air temperature differences [J]. Ergonomics, 1986, 29(1): 131–143. DOI: https://doi.org/10.1080/00140138608968246.

    Article  Google Scholar 

  81. BOHGAKI K, IMAGAWA N, ITOH H, et al. The effects of vertical air temperature defferences on thermal comfort and physiological responses [J]. Journal of Architecture, Planning and Environmental Engineering (Transactions of AIJ), 1990, 417: 31–42. DOI: https://doi.org/10.3130/aijax.417.0_31.

    Article  Google Scholar 

  82. LIU Wei-wei, LIAN Zhi-wei, DENG Qi-hong, et al. Evaluation of calculation methods of mean skin temperature for use in thermal comfort study [J]. Building and Environment, 2011, 46(2): 478–488. DOI: https://doi.org/10.1016/j.buildenv.2010.08.011.

    Article  Google Scholar 

  83. ZHANG Yu-feng, ZHAO Rong-yi. Effect of local exposure on human responses [J]. Building and Environment, 2007, 42(7): 2737–2745. DOI: https://doi.org/10.1016/j.buildenv.2006.07.014.

    Article  Google Scholar 

  84. MATSUNAGA K, SUDO F, TANABE S I, et al. Evaluation and measurement of thermal comfort in the vehicles with a new thermal manikin [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. DOI: https://doi.org/10.4271/931958.

    Book  Google Scholar 

  85. JIN Q. Study on thermal sensation during step-change in non-uniform thermal environment [D]. Dalian: Dalian University of Technology, 2012. (in Chinese)

    Google Scholar 

  86. TAN Chang, LI Nian-ping, HE Ying-dong. Influences of foot heating on human body’s overall and local thermal sensation in non-uniform environment [J]. Heating Ventilating & Air Conditioning, 2018, 48(8): 35–41.

    Google Scholar 

  87. ZHANG Cheng-jiao, LAI Dan-dan, LU Ye-hu, et al. Smart heating sleeping bags for improving wearers’ thermal comfort at the feet [J]. Extreme Physiology & Medicine, 2015, 4(S1): A92. DOI: https://doi.org/10.1186/2046-7648-4-s1-a92.

    Article  Google Scholar 

  88. JAZIZADEH F, JUNG W. Personalized thermal comfort inference using RGB video images for distributed HVAC control [J]. Applied Energy, 2018, 220: 829–841. DOI: https://doi.org/10.1016/j.apenergy.2018.02.049.

    Article  Google Scholar 

  89. SIM S Y, KOH M J, JOO K M, et al. Estimation of thermal sensation based on wrist skin temperatures [J]. Sensors (Basel, Switzerland), 2016, 16(4): 420. DOI: https://doi.org/10.3390/s16040420.

    Article  Google Scholar 

  90. GHAHRAMANI A, CASTRO G, BECERIK-GERBER B, et al. Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort [J]. Building and Environment, 2016, 109: 1–11. DOI: https://doi.org/10.1016/j.buildenv.2016.09.005.

    Article  Google Scholar 

  91. KIM J, ZHOU Yu-xun, SCHIAVON S, et al. Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning [J]. Building and Environment, 2018, 129: 96–106. DOI: https://doi.org/10.1016/j.buildenv.2017.12.011.

    Article  Google Scholar 

  92. WU Zhi-bin, LI Nian-ping, PENG Jin-qing, et al. Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings [J]. Energy and Buildings, 2018, 173: 117–127. DOI: https://doi.org/10.1016/j.enbuild.2018.05.031.

    Article  Google Scholar 

  93. KATIĆ K, LI Rong-ling, VERHAART J, et al. Neural network based predictive control of personalized heating systems [J]. Energy and Buildings, 2018, 174: 199–213. DOI: https://doi.org/10.1016/j.enbuild.2018.06.033.

    Article  Google Scholar 

  94. ZHOU G, MELIKOV A. Equivalent frequency—A new parameter for description of frequency characteristics of airflow fluctuations [C]//Proceedings of Roomvent. 2002: 357–360.

  95. ZHOU G, MELIKOV A, FANGER P. Impact of equivalent frequency on the sensation of draught [C]//Proceedings of the Eighth International Conference on Air Distribution in Rooms, Roomvent 2002. Copenhagen, Denmark, 2002.

  96. KIM J, BAUMAN F, RAFTERY P, et al. Occupant comfort and behavior: High-resolution data from a 6-month field study of personal comfort systems with 37 real office workers [J]. Building and Environment, 2019, 148: 348–360. DOI: https://doi.org/10.1016/j.buildenv.2018.11.012.

    Article  Google Scholar 

  97. SHAHZAD S, CALAUTIT J K, AQUINO A I, et al. A user-controlled thermal chair for an open plan workplace: CFD and field studies of thermal comfort performance [J]. Applied Energy, 2017, 207: 283–293. DOI: https://doi.org/10.1016/j.apenergy.2017.05.118.

    Article  Google Scholar 

  98. WANG Z, LUO M. The effect of a low-energy wearable thermal device on human comfort [C]//The 15th Conference of the International Society Indoor Air Quality & Climate. Philadelphia, PA, USA: 2018. https://escholarship.org/uc/item/5f2876gr(2018).

  99. ZHANG H, HUIZENGA C, ARENS E, et al. Thermal sensation and comfort in transient non-uniform thermal environments [J]. European Journal of Applied Physiology, 2004, 92(6): 728–733. DOI: https://doi.org/10.1007/s00421-004-1137-y.

    Article  Google Scholar 

  100. WANG Dan-ni, ZHANG Hui, ARENS E, et al. Observations of upper-extremity skin temperature and corresponding overall-body thermal sensations and comfort [J]. Building and Environment, 2007, 42(12): 3933–3943. DOI: https://doi.org/10.1016/j.buildenv.2006.06.035.

    Article  Google Scholar 

  101. van OEFFELEN L, JACOBS P, van ZUNDERT K. Personal heating: Is it comfortable and can it save energy? [C]//12th International Conference on Indoor Air Quality and Climate 2011. Austin, TX, 2011: 3017.

Download references

Author information

Authors and Affiliations

Authors

Contributions

TIAN Xiao-yu and LIU Jia-wei conducted the literature review and wrote the manuscript. LIU Wei-wei, YU-Bo and ZHANG Jian provided the concept and edited the draft of manuscript. All authors replied to reviewers’ comment and revised the final version.

Corresponding author

Correspondence to Wei-wei Liu  (刘蔚巍).

Additional information

Conflict of interest

TIAN Xiao-yu, LIU Wei-wei, LIU Jia-wei, YU-Bo, ZHANG Jian declare that they have no conflict of interest.

Foundation item: Projects(51978661, 51778625) supported by the National Natural Science Foundation of China; Project (ACSKL2018KT12) supported by State Key Laboratory of Air-conditioning Equipment and System Energy Conservation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Xy., Liu, Ww., Liu, Jw. et al. Effects of personal heating on thermal comfort: A review. J. Cent. South Univ. 29, 2279–2300 (2022). https://doi.org/10.1007/s11771-022-5076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5076-8

Key words

关键词

Navigation