Skip to main content

Part of the book series: Indoor Environment and Sustainable Building ((IESB))

Abstract

Personal thermal management appears to be a promising approach for improving individual thermal comfort while keeping building energy consumption to a minimum. Personal thermal management systems (PTMS) have numerous advantages. First, PTMS could significantly reduce building cooling and heating energy consumption. They also do not require an air distribution system, which is a significant source of energy consumption in traditional personalized ventilation systems (PVS). Furthermore, PTMSs with near-zero energy input could significantly reduce built-environment energy consumption. Furthermore, PTMSs could prevent draught risks caused by high supply air velocity, which is a common issue in TACS (task/ambient conditioning systems) and PVS. This chapter provides an in-depth overview of various existing personal thermal management systems, including their advantages and disadvantages in comparison to other systems such as HVAC (heating, ventilation, and air conditioning) and PECS (personal environment control system). Finally, future trends in PTMS development and research have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Air cooling

AH:

Air flow heating

AI:

Artificial intelligence

ASHRAE:

American Society of Heating, Refrigerating and Air-Conditioning Engineers

CH:

Chemical heating

CHC:

Chemical heating clothing

CV:

Computer vision

EC:

Evaporative cooling

EH:

Electrical heating

EHC:

Electrical heating clothing

FH:

Fluid/flow heating

GHG:

Global greenhouse gas

HVAC:

Heating, ventilation, and air conditioning

HYC:

Hybrid cooling

ITVOF:

Infrared transparent and visible opaque fabrics

LC:

Liquid cooling

ML:

Machine learning

nanoPE:

Nanoporous polyethylene

PCD:

Personal comfort device

PCM:

Phase change material

PCMC:

Phase change material cooling

PCMH:

Phase change material heating

PCS:

Personal cooling system

PE:

Polyethylene

PECS:

Personal environment control system

PI:

Passive insulation

PP:

Polypropylene

PV:

Personalised ventilation

PVS:

Personalised ventilation system

PTM:

Personal thermal management

PTMS:

Personal thermal management systems

TACS:

Task/ambient conditioning systems

TCV:

Thermal comfort vote

TEC:

Thermoelectric cooling

TECU:

Thermoelectric energy conversion unit

TSV:

Thermal sensation vote

References

  1. Du X, Bokel R, van den Dobbelsteen A (2014) Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: a Chinese vernacular house case. Build Environ 82:215–227

    Article  Google Scholar 

  2. Dong Y, Coleman M, Miller SA (2021) Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annu Rev Environ Resour 46:59–83

    Article  Google Scholar 

  3. Jing R, Wang M, Zhang R, Li N, Zhao Y (2017) A study on energy performance of 30 commercial office building in Hong Kong. Energy Build 144:117–128

    Article  Google Scholar 

  4. Knight IP (2012) Assessing electric energy use in HVAC systems. REHVA J 49(1):6–11

    Google Scholar 

  5. Ma H, Du N, Yu S, Lu W, Zhang Z, Deng N, Li C (2017) Analysis of typical public building energy consumption in northern China. Energy Build 136:139–150

    Article  Google Scholar 

  6. Spyropoulos GN, Balaras CA (2011) Energy consumption and the potential of energy saving in Hellenic office buildings used a bank branches-a case study. Energy Build 43(4):770–778

    Article  Google Scholar 

  7. Hsiao SW, Lin HH, Lo CH (2016) A study of thermal comfort enhancement by the optimization of airflow induced by a ceiling fan. J Interdisc Math 19(4):859–891

    Article  Google Scholar 

  8. Lipczynska A, Schiavon S, Graham LT (2018) Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Build Environ 135:202–212

    Article  Google Scholar 

  9. Myhren JA, Holmberg S (2009) Design considerations with ventilation-radiators: comparisons to traditional two-panel radiators. Energy Build 41(1):92–100

    Article  Google Scholar 

  10. Oxizidis S, Papadopoulos AM (2013) Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort. Energy Build 57:199–209

    Article  Google Scholar 

  11. Schiavon S, Ak M (2008) Energy saving and improved comfort by increased air movement. Energy Build 40(10):1954–1960

    Article  Google Scholar 

  12. Sevilgen G, Kilic M (2011) Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators. Energy Build 43(1):137–146

    Article  Google Scholar 

  13. Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energy Build 256:111747

    Article  Google Scholar 

  14. Parsons KC (2002) The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort. Energy Build 34(6):593–599

    Article  Google Scholar 

  15. Yue X, Zhang T, Yang D, Qiu F, Wei G, Zhou H (2019) Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63:103808

    Article  Google Scholar 

  16. Hsu PC, Song AY, Catrysee PB, Liu C, Peng Y, Xie J, Fan S, Cui Y (2016) Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303):1019–1023

    Article  Google Scholar 

  17. Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:100465

    Article  Google Scholar 

  18. Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon 2(6):769–778

    Article  Google Scholar 

  19. Gao C, Kuklane K, Wang F, Holmér I (2012) Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 22(6):523–530

    Article  Google Scholar 

  20. Gu B, Qiu F, Yang D, Zhang T (2022) Waste-to-resource strategy to fabricate wearable Janus membranes derived from corn bracts for application in personal thermal management. Cellulose 29:1219–1230

    Article  Google Scholar 

  21. Guo Z, Sun C, Wang J, Cai Z, Ge F (2021) High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces 13:8851–8862

    Article  Google Scholar 

  22. Ham JF (1965) Use of a Vortex tube in safety clothing. Achieves Environ Health 10(4):619–623

    Article  Google Scholar 

  23. Liu Q, Tian B, Liang J, Wu W (2021) Recent advances in printed flexible heaters for portable and wearable thermal management. Mater Horiz 8:1634–1656

    Article  Google Scholar 

  24. Song W, Wang F, Wei F (2016) Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment. Build Environ 100:92–101

    Article  Google Scholar 

  25. Song W, Wang F, Zhang C, Lai D (2015) On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment. Build Environ 94:704–713

    Article  Google Scholar 

  26. Udayraj LZ, Ke Y, Wang F, Yang B (2018) Personal cooling strategies to improve thermal comfort in warm indoor environments: comparison of a conventional desk fan and air ventilation clothing. Energy Build 174:439–451

    Article  Google Scholar 

  27. Udayraj LZ, Ke Y, Wang F, Yang B (2018) A study of thermal comfort enhancement using three energy-efficient personalized heating strategies at two low indoor temperatures. Build Environ 143:1–14

    Article  Google Scholar 

  28. Wang Y, Chen L, Cheng H, Wang B, Feng X, Mao Z, Sui X (2020) Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem Eng J 402:126222

    Article  Google Scholar 

  29. Wang Z, Warren K, Luo M, He X, Zhang H, Arens E, Chen W, He Y, Hu Y, Jin L, Liu S, Cohen-Tanugi D, Smith MJ (2020b) Evaluating the comfort of thermally dynamic wearable devices. Buildi Environ 167:106443

    Google Scholar 

  30. Williams BA, Chambers AB (1972) Effect of neck warming and cooling on thermal comfort. In The 2nd conference on portable life support systems, report No. NASA SP-302, Washington DC, 1972, pp 289–294

    Google Scholar 

  31. Zhang H, Arens E, Taub M, Dickerhoff D, Bauman F, Mountain M, Paust W, Fannon D, Zhai YC, Pigman M (2015) Using footwarmers in office for thermal comfort and energy savings. Energy Build 104:233–243

    Article  Google Scholar 

  32. Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Ye L, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595

    Article  Google Scholar 

  33. Zhao D, Lu X, Fan T, Wu YS, Lou L, Wang Q, Fan J, Yang R (2018) Personal thermal management using portable thermoelectric for potential building energy saving. Appl Energy 218:282–291

    Article  Google Scholar 

  34. Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y (2017) Warming up human body by nanoporous metalized polyethylene textile. Nat Commun 8:496

    Article  Google Scholar 

  35. Guo Y, Dun C, Xu J, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645

    Article  Google Scholar 

  36. Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371

    Article  Google Scholar 

  37. Ke Y, Wang F, Xu P, Yang B (2018) On the use of a novel nanoporous polyethylene (nanoPE) passive cooling materials for personal thermal comfort management under uniform indoor environments. Build Environ 145:85–95

    Article  Google Scholar 

  38. Liu Q, Huang J, Zhang J, Hong Y, Wan Y, Wang Q, Gong M, Wu Z, Guo CF (2018) Thermal, waterproof. Breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 10(2):2026–2032

    Google Scholar 

  39. Peng L, Su B, Yu A, Jiang X (2019) Review of clothing for thermal management with advanced materials. Cellulose 26(10):6415–6448

    Article  Google Scholar 

  40. Peng Y, Lee HK, Wu DS, Cui Y (2022) Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering 10:167–173

    Article  Google Scholar 

  41. Peng Y, Li W, Liu B, Jin W, Schaadt J, Tang J, Zhou G, Wang G, Zhou J, Zhang C, Zhu Y, Huang W, Wu T, Goodson KE, Dames C, Prasher R, Fan S, Cui Y (2021) Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 12:6122

    Article  Google Scholar 

  42. Zhu Z, Zhang J, Tong YL, Peng G, Cui T, Wang CF, Chen S, Weitz DA (2019) Reduced graphene oxide membrane induced robust structural colors toward personal thermal management. ACS Photon 6(1):116–122

    Article  Google Scholar 

  43. Nunneley SA (1970) Water cooled garments: a review. Space Life Sci 2(3):335–360

    Google Scholar 

  44. Speckman KL, Allan A, Sawka MN, Young A, Muza SR, Pandolf KB (1988) Perspectives in microclimate cooling involving protective clothing in hot environments. Int J Ind Ergon 3(2):121–147

    Article  Google Scholar 

  45. Gao C, Kuklane K, Holmér I (2010) Cooling vest with phase change material packs: the effects of temperature gradient, mass and covering area. Ergonomics 53(5):716–723

    Article  Google Scholar 

  46. Kang Z, Udayraj WX, Wang F (2018) A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: experimental validation and parametric study. Build Environ 145:276–289

    Article  Google Scholar 

  47. Udayraj WF, Song W, Ke Y, Xu P, Chow CSW, Noor N (2019) Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation. Ergonomics 62(7):928–939

    Article  Google Scholar 

  48. Wan X, Wang F, (2018) Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans. Int J Heat Mass Transf 126:636-648

    Google Scholar 

  49. Wang F, Chow CSW, Zheng Q et al (2019) On the use of personal cooling suits to mitigate heat strain of mascot actors in a hot and humid environment. Energy Build 205:109561

    Article  Google Scholar 

  50. Wang F, Kang Z, Zhou J (2019) Model validation and parametric study on a personal heating clothing system (PHCS) to help occupant attain thermal comfort in unheated buildings. Build Environ 162:106308

    Article  Google Scholar 

  51. Morrissey M, Wang F (2014) Air and water perfusion-based personal cooling systems (PCSs) to protect against heat stress in protective clothing. In: Wang F, Gao C (eds) Protective clothing: managing thermal stress. Woodhead Publishing, Cambridge, UK, pp 296–315

    Chapter  Google Scholar 

  52. Yang J, Wang F, Song G, Li R (2022) Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition. Int J Occupational Safety Ergon 28:354–363

    Google Scholar 

  53. Zhao M, Gao C, Wang F, Kuklane K, Holmér I, Li J (2013) A study on local cooling of garments with ventilation fans and openings placed at difference torso sites. Int J Ind Ergon 43(3):232–237

    Article  Google Scholar 

  54. Zhao M, Kuklane K, Lundgren K, Gao C, Wang F (2015) A ventilation cooling shirt worn during office work in a hot climate: cool or not? Int J Occup Saf Ergon 21(4):457–463

    Article  Google Scholar 

  55. Yang B, Lei TH, Yang P, Liu Km Wang F (2021) On the use of wearable face and neck cooling fans to improve occupant thermal comfort in warm indoor environments. Energies 14:8077

    Article  Google Scholar 

  56. Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaaw0536

    Google Scholar 

  57. Kishore RA, Nozariasbmarz A, Poudel B, Sanghadasa M, Priya S (2019) Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun 10:1765

    Article  Google Scholar 

  58. Lou L, Shou D, Park H, Zhao D, Wu YS, Hui X, Yang R, Kan EC, Fan J (2020) Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy Build 226:110374

    Article  Google Scholar 

  59. Li Z, Zhang M, Yuan T, Wang Q, Hu P, Xu Y (2023) New wearable thermoelectric cooling garment for relieving the thermal stress of body in high temperature environments. Energy Build 278:112600

    Article  Google Scholar 

  60. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461

    Article  Google Scholar 

  61. Li L, Liu WD, Liu Q, Chen ZG (2022) Multifunctional wearable thermoelectrics for personal thermal management. Adv Func Mater 32(22):2200548

    Article  Google Scholar 

  62. Wang F, Song W (2017) An investigation of thermophysiological responses of human while using four personal cooling strategies during heatwave. J Therm Biol 70:37–44

    Article  Google Scholar 

  63. Song Y, Li Y, Yan DX, Lei J, Li ZM (2020) Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos A Appl Sci Manuf 130:105738

    Article  Google Scholar 

  64. Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10(17):1903921

    Article  Google Scholar 

  65. Wang F, Gao C, Kuklane K, Holmér I (2010) A review of technology of personal heating garments. Int J Occup Saf Ergon 16(3):387–404

    Article  Google Scholar 

  66. Xu P, Wang F, Zhao M (2014) Electrically heated clothing (EHC) for protection against cold stress. In: Wang F, Gao C (eds) Protective clothing: managing thermal stress. Woodhead Publishing, Cambridge, UK, pp 281–295

    Chapter  Google Scholar 

  67. Zhang C, Ren C, Li Y, Song W, Xu P, Wang F (2016) Designing a smart electrically heated sleeping bag to improve wearers’ feet thermal comfort while sleeping in a cold ambient environment. Text Res J 87(10):1251–1260

    Article  Google Scholar 

  68. He Y, Li N, Zhou L, Wang K, Zhang W (2017) Thermal comfort and energy consumption in cold environment with retrofitted Huotong (warm-barrel). Build Environ 112:285–295

    Article  Google Scholar 

  69. Pasut W, Zhang H, Arens E, Kaam S, Zhai Y (2013) Effect of a heated and cooled office chair on thermal comfort. HVAC&R Res 19(5):574–583

    Google Scholar 

  70. Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4(4):724–742

    Article  Google Scholar 

  71. Chai J, Kang Z, Yan Y, Lou L, Zhou Y, Fan J (2022) Thermoregulatory clothing with temperature-adaptive multimodal bod heat regulation. Cell Rep Phys Sci 3(7):100958

    Article  Google Scholar 

  72. Kusiak A, Xu G, Zhang Z (2014) Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method. Energy Convers Manage 85:146–153

    Article  Google Scholar 

  73. Bauman FS, Zhang H, Arens E et al (1993) Localized comfort control with a desktop task conditioning system: laboratory and field measurements. ASHRAE Trans 99(2):733–749

    Google Scholar 

  74. Faulkner D, Fisk WJ, Sullivan DP et al (1999) Ventilation efficiencies of desk-mounted task/ambient conditioning systems. Indoor Air 9(4):273–281

    Article  Google Scholar 

  75. Fountain M, Arens E, de Dear R et al (1994) Locally controlled air movement preferred in warm isothermal environments. ASHRAE Trans 100(2):937–952

    Google Scholar 

  76. Hedge A, Michael A, Parmelee S (1993) Reactions of facilities managers and office workers to underfloor task air ventilation. J Arch Plan Res 10:203–218

    Google Scholar 

  77. Kroner WM (1994) Environmentally responsive workstations and office-worker productivity. ASHRAE Trans 100(2):750–755

    Google Scholar 

  78. Gorji M, Mazinani S, Gharehaghaji AA (2022) A review on emerging developments in thermal and moisture management by membrane-based clothing systems towards personal comfort. J Appl Polym Sci 139(27):e52416

    Article  Google Scholar 

  79. Sajjad U, Hamid K, ur-Rehman T, Sultan M, Abbas N, Muhammad A, Imran M, Muneeshwaran M, Chang JY, Wang CC (2022) Personal thermal management-a review on strategies, progress, and prospects. Int Commun Heat Mass Transf 130:105739

    Google Scholar 

  80. Tabor J, Chatterjee GTK (2020) Smart textile-based personal thermal comfort systems: current status and potential solutions. Adv Mater Technol 5(5):1901155

    Article  Google Scholar 

  81. Farooq AS, Zhang P (2021) Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos A Appl Sci Manuf 142:106249

    Article  Google Scholar 

  82. Sun K, Dong H, Kou Y, Yang H, Liu H, Li Y, Shi Q (2021) Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem Eng J 419:129637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, F. (2023). Wearable Personal Thermal Management Systems (PTMS). In: Wang, F., Yang, B., Deng, Q., Luo, M. (eds) Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality. Indoor Environment and Sustainable Building. Springer, Singapore. https://doi.org/10.1007/978-981-99-0718-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0718-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0717-5

  • Online ISBN: 978-981-99-0718-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics