Skip to main content
Log in

An experimental investigation of failure mechanical behavior in cylindrical granite specimens containing two non-coplanar open fissures under different confining pressures

不同围压下非共面双裂隙圆柱形花岗岩试样破坏力学特性试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fissures play a significant role in predicting the unstable failure of rock mass engineering. For deep rock underground engineering, rock mass containing pre-existing fissures is usually located in triaxial stress state. Therefore, not only pre-existing fissure but also confining pressure affects the failure mechanical behavior of rock material. In this research, the granite specimens containing two non-coplanar open fissures were investigated by a series of conventional triaxial compression tests. First, the effect of bridge angle and confining pressure on strength and deformation characteristics of granite specimens was evaluated. Results show that the triaxial compressive strength, failure axial strain, and crack damage threshold increased nonlinearly with confining pressure. Under high confining pressures, elastic modulus was insensitive to bridge angle. Then, an X-ray micro-CT scanning technique was used to analyze the internal fracture characteristics of granite specimens with respect to various bridge angles and confining pressures. Five typical crack coalescence modes were identified, namely, indirect coalescence, shear coalescence and three types of tensile coalescence. The reconstructed 3-D CT images indicated that under uniaxial or low confining pressures, the bridge angle had a significant effect on crack evolution behavior, while under high confining pressures, shear-dominated failures occurred with the development of anti-wing cracks.

摘要

裂隙在岩体工程失稳破坏预测中具有重要作用。对于深部岩体地下工程,含裂隙岩体通常处于三轴应力状态。因此,岩石材料破坏力学特性不仅受到原生裂隙的影响,还受到围压的影响。本文采用常规三轴压缩试验对含两个非共面张开裂隙花岗岩试样进行了研究。首先,研究了岩桥倾角和围压对花岗岩试样强度和变形特性的影响,结果表明:三轴抗压强度、破坏轴向应变和裂纹损伤阈值随围压的增大呈非线性增加; 高围压下,弹性模量对岩桥倾角不敏感。然后,利用X射线微米CT扫描技术分析了不同岩桥倾角和围压下花岗岩试样内部断裂特征,定义了5 种典型的裂纹贯通模式,即间接贯通模式、剪切贯通模式以及三种拉伸贯通模式。重构的三维CT图像表明,单轴和低围压条件下,岩桥倾角对裂纹演化行为有显著影响; 而高围压条件下,随着反向翼型裂纹的扩展,剪切主导最终的破坏。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANG Chun-an, TANG Shi-bin, GONG Bin, et al. Discontinuous deformation and displacement analysis: From continuous to discontinuous [J]. Science China Technological Sciences, 2015, 58(9): 1567–1574. DOI: https://doi.org/10.1007/s11431-015-5899-8.

    Article  Google Scholar 

  2. YANG S Q, JIANG Y Z, XU W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression [J]. International Journal of Solids and Structures, 2008, 45(17): 4796–4819. DOI: https://doi.org/10.1016/j.ijsolstr.2008.04.023.

    Article  Google Scholar 

  3. YANG Sheng-qi, JING Hong-wen. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression [J]. International Journal of Fracture, 2011, 168(2): 227–250. DOI: https://doi.org/10.1007/s10704-010-9576-4.

    Article  Google Scholar 

  4. ZHOU X P, CHENG H, FENG Y F. An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1961–1986. DOI: https://doi.org/10.1007/s00603-013-0511-7.

    Article  Google Scholar 

  5. ZHOU Xiao-ping, WANG Yun-teng, XU Xiao-min. Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics [J]. International Journal of Fracture, 2016, 201(2): 213–234. DOI: https://doi.org/10.1007/s10704-016-0126-6.

    Article  Google Scholar 

  6. ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. DOI: https://doi.org/10.1007/s00603-014-0627-4.

    Article  Google Scholar 

  7. HUANG Yan-hua, YANG Sheng-qi, BU Yi-shun. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102474. DOI: https://doi.org/10.1016/j.tafmec.2020.102474.

    Article  Google Scholar 

  8. LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression [J]. International Journal of Solids and Structures, 2011, 48(6): 979–999. DOI: https://doi.org/10.1016/j.ijsolstr.2010.12.001.

    Article  Google Scholar 

  9. ZHONG Shan, JIANG Quan, LIU Chang, et al. In-site core disking phenomenon and break mechanism of hard marble: Investigation in 2400 m deep-buried underground laboratory [J]. Journal of Central South University, 2020, 27(10): 2959–2970. DOI: https://doi.org/10.1007/s11771-020-4521-9.

    Article  Google Scholar 

  10. XU Lei, GONG Feng-qiang, LUO Song. Effects of preexisting single crack angle on mechanical behaviors and energy storage characteristics of red sandstone under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2021, 113: 102933. DOI: https://doi.org/10.1016/j.tafmec.2021.102933.

    Article  Google Scholar 

  11. LAJTAI E Z. Shear strength of weakness planes in rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1969, 6(5): 499–515. DOI: https://doi.org/10.1016/0148-9062(69)90016-3.

    Article  Google Scholar 

  12. SHEN B. The mechanism of fracture coalescence in compression—Experimental study and numerical simulation [J]. Engineering Fracture Mechanics, 1995, 51(1): 73–85. DOI: https://doi.org/10.1016/0013-7944(94)00201-R.

    Article  Google Scholar 

  13. WONG R H C, CHAU K T. Crack coalescence in a rock-like material containing two cracks [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 147–164. DOI: https://doi.org/10.1016/S0148-9062(97)00303-3.

    Article  Google Scholar 

  14. BOBET A, EINSTEIN H H. Fracture coalescence in rocktype materials under uniaxial and biaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863–888. DOI: https://doi.org/10.1016/S0148-9062(98)00005-9.

    Article  Google Scholar 

  15. TANG Hu-dan, ZHU Zhen-de, ZHU Ming-li, et al. Mechanical behavior of 3D crack growth in transparent rocklike material containing preexisting flaws under compression [J]. Advances in Materials Science and Engineering, 2015, 2015: 193721. DOI: https://doi.org/10.1155/2015/193721.

    Google Scholar 

  16. YANG Sheng-qi, HUANG Yan-hua. An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures [J]. Environmental Earth Sciences, 2017, 76(10): 1–22. DOI: https://doi.org/10.1007/s12665-017-6696-4.

    Article  MathSciNet  Google Scholar 

  17. HUANG Yan-hua, YANG Sheng-qi. Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression [J]. International Journal of Damage Mechanics, 2019, 28(4): 590–610. DOI: https://doi.org/10.1177/1056789518780214.

    Article  Google Scholar 

  18. WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239–249. DOI: https://doi.org/10.1016/j.ijrmms.2008.03.006.

    Article  Google Scholar 

  19. WONG L N Y, EINSTEIN H H. Crack coalescence in molded gypsum and Carrara marble: Part 2—Microscopic observations and interpretation [J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 513–545. DOI: https://doi.org/10.1007/s00603-008-0003-3.

    Article  Google Scholar 

  20. MILLER J T, EINSTEIN H H. Crack coalescence tests on granite [C]//42nd US Rock Mechanics Symposium and 2nd U. S. -Canada Rock Mechanics Symposium. San Francisco. American Rock Mechanics Association, 2008: 8–162.

  21. CHENG Yi, WONG L N Y. Microscopic characterization of tensile and shear fracturing in progressive failure in marble [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 204–225. DOI: https://doi.org/10.1002/2017JB014581.

    Article  Google Scholar 

  22. YANG Sheng-qi, HU Bo. Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa [J]. Scientific Reports, 2020, 10: 1900. DOI: https://doi.org/10.1038/s41598-020-58595-2.

    Article  Google Scholar 

  23. WANG Yong-yan, WANG Hong-wei, SHI Xiao. Creep investigation on shale-like material with preexisting fissure under coupling temperatures and confining pressures [J]. Advances in Civil Engineering, 2019: 7861305. DOI: https://doi.org/10.1155/2019/7861305.

  24. WU Jiang-yu, FENG Mei-mei, HAN Guan-sheng, et al. Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws [J]. Comptes Rendus Mécanique, 2019, 347(1): 62–89. DOI: https://doi.org/10.1016/j.crme.2018.10.002.

    Article  Google Scholar 

  25. YANG Sheng-qi, HUANG Yan-hua, RANJITH P G. Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures [J]. Engineering Fracture Mechanics, 2018, 193: 108–121. DOI: https://doi.org/10.1016/j.engfracmech.2018.02.021.

    Article  Google Scholar 

  26. FENG Peng, DAI Feng, LIU Yi, et al. Mechanical behaviors of rock-like specimens with two non-coplanar fissures subjected to coupled static-dynamic loads [J]. Engineering Fracture Mechanics, 2018, 199: 692–704. DOI: https://doi.org/10.1016/j.engfracmech.2018.07.009.

    Article  Google Scholar 

  27. REN Wen-yuan, YANG Zhen-jun, SHARMA R, et al. Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete [J]. Engineering Fracture Mechanics, 2015, 133: 24–39. DOI: https://doi.org/10.1016/j.engfracmech.2014.10.016.

    Article  Google Scholar 

  28. YU Qing-lei, LIU Hong-yuan, YANG Tian-hong, et al. 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography [J]. International Journal of Solids and Structures, 2018, 147: 204–222. DOI: https://doi.org/10.1016/j.ijsolstr.2018.05.026.

    Article  Google Scholar 

  29. YANG Sheng-qi, RANJITH P G, GUI Yi-lin. Experimental study of mechanical behavior and X-ray micro CT observations of sandstone under conventional triaxial compression [J]. Geotechnical Testing Journal, 2015, 38(2): 20140209. DOI: https://doi.org/10.1520/gtj20140209.

    Article  Google Scholar 

  30. YANG Sheng-qi. Fracturing mechanism of compressed hollow-cylinder sandstone evaluated by X-ray micro-CT scanning [J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2033–2053. DOI: https://doi.org/10.1007/s00603-018-1466-5.

    Article  Google Scholar 

  31. FAIRHURST C, HUDSON J. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1999, 36(3): 281–289. DOI: https://doi.org/10.1016/S0148-9062(99)00006-6.

    Google Scholar 

  32. YANG Sheng-qi, JING Hong-wen, CHENG Long. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone [J]. Engineering Geology, 2014, 179: 10–23. DOI: https://doi.org/10.1016/j.enggeo.2014.06.016.

    Article  Google Scholar 

  33. YANG Sheng-qi, RANJITH P G, HUANG Yan-hua, et al. Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading [J]. Geophysical Journal International, 2015, 201(2): 662–682. DOI: https://doi.org/10.1093/gji/ggv023.

    Article  Google Scholar 

  34. HOEK E, BROWN E T. Underground excavation in rock [R]. London: Institution of Mining and Metallurgy, 1980.

    Google Scholar 

  35. HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186. DOI: https://doi.org/10.1016/S1365-1609(97)80069-X.

    Article  Google Scholar 

  36. YANG Sheng-qi, TIAN Wen-ling, HUANG Yan-hua, et al. An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1497–1515. DOI: https://doi.org/10.1007/s00603-015-0838-3.

    Article  Google Scholar 

  37. ZHU Quan-qi, LI Di-yuan, HAN Zhen-yu, et al. Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads [J]. Acta Geotechnica, 2022, 17(1): 131–152. DOI: https://doi.org/10.1007/s11440-021-01196-8.

    Article  Google Scholar 

  38. LIU K, ZHAO J. Progressive damage behaviours of triaxially confined rocks under multiple dynamic loads [J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 3327–3358. DOI: https://doi.org/10.1007/s00603-021-02408-z.

    Article  Google Scholar 

  39. HU Yun-peng, WANG Qi-ling, WANG Ming-nian, et al. A study on the thermo-mechanical properties of shotcrete structure in a tunnel, excavated in granite at nearly 90 °C temperature [J]. Tunnelling and Underground Space Technology, 2021, 110: 103830. DOI: https://doi.org/10.1016/j.tust.2021.103830.

    Article  Google Scholar 

  40. WANG Chun, LI Xin-ru, XIE Mei-zhi, et al. Static and dynamic failure mechanisms of circular granite under the condition of water-heat cycles [J]. Scientific Reports, 2021, 11: 5927. DOI: https://doi.org/10.1038/s41598-021-85314-2.

    Article  Google Scholar 

  41. YANG Jing, YANG Sheng-qi, LIU Guang-jian, et al. Experimental study of crack evolution in prefabricated double-fissure red sandstone based on acoustic emission location [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(1): 1–20. DOI: https://doi.org/10.1007/s40948-021-00219-8.

    Article  Google Scholar 

  42. YANG Jing, MU Zong-long, YANG Sheng-qi. Experimental study of acoustic emission multi-parameter information characterizing rock crack development [J]. Engineering Fracture Mechanics, 2020, 232: 107045. DOI: https://doi.org/10.1016/j.engfracmech.2020.107045.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YANG Sheng-qi provided the concept and wrote the first draft of manuscript. DONG Jin-peng and YANG Jing conducted the literature review and analyzed some experimental results. YANG Zhen and HUANG Yan-hua made the experiments and dealed with some experimental data of the manuscript.

Corresponding author

Correspondence to Sheng-qi Yang  (杨圣奇).

Additional information

Conflict of interest

YANG Sheng-qi, DONG Jin-peng, YANG Jing, YANG Zhen and HUANG Yan-hua declare that they have no conflict of interest.

Foundation item: Project(42077231) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Sq., Dong, Jp., Yang, J. et al. An experimental investigation of failure mechanical behavior in cylindrical granite specimens containing two non-coplanar open fissures under different confining pressures. J. Cent. South Univ. 29, 1578–1596 (2022). https://doi.org/10.1007/s11771-022-5035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5035-4

Key words

关键词

Navigation