Skip to main content

Advertisement

Log in

Fracturing Mechanism of Compressed Hollow-Cylinder Sandstone Evaluated by X-ray Micro-CT Scanning

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Triaxial compression experiments under confining pressures of 16 and 35 MPa were first carried out for hollow-cylinder sandstone specimens using a rock mechanics testing system. Four hollow-cylinder sandstone specimens were compressed to various deformation positions before or after the peak strength. Then, the compressed hollow-cylinder sandstone specimens were analysed using a three-dimensional X-ray micro computed tomography (CT) scanning system. Based on the horizontal and vertical cross-sectional CT images, the internal damage behaviour of hollow-cylinder sandstone specimens was evaluated. It can be seen that the crack system of hollow-cylinder sandstone specimens with higher compressed deformation after the peak strength are more complicated than those with lower compressed deformation close to the peak strength. In the present study, the hollow-cylinder sandstone specimens with lower compressed deformation are only dominated by some internal wall fractures resulting mainly from shear cracks, whereas the hollow-cylinder sandstone specimens with higher compressed deformation are mainly dominated by two shear fractures, as well as some tensile cracks. For the same axial stress level, hollow-cylinder sandstone under a higher confining pressure has a more complicated crack system than that under a lower confining pressure. The experimental results demonstrated that the three-dimensional cracks in the hollow specimen under triaxial compression are first initiated from the internal wall due to shear slippage, and then propagate towards the top or bottom boundary of the specimen in shear fracture mode. To better explain the internal crack evolution mechanism of hollow-cylinder sandstone during the entire loading, a conceptual model of hollow-cylinder sandstone material under the action of confining pressure is proposed. At the same time, the effect of the borehole size on the internal damage behaviour of the compressed specimen after the peak strength is also discussed. The investigated conclusions are significant for predicting the instability occurring around deep well bores in petroleum engineering and for ensuring the safety of deep excavation damage zones in tunnel engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Modified from Yang 2016)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alsayed MI (2002) Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders. Int J Rock Mech Min Sci 39:355–366

    Article  Google Scholar 

  • Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for the intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(3):279–289

    Article  Google Scholar 

  • Feng XT, Chen SL, Zhou H (2004) Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. Int J Rock Mech Min Sci 41(2):181–192

    Article  Google Scholar 

  • Ge XR, Ren JX, Pu YB, Ma W, Zhu YL (2001) Real-in time CT test of the rock meso-damage propagation law. Sci China (Ser E) 44(3):328–336

    Article  Google Scholar 

  • Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4:177–285

    Article  Google Scholar 

  • Hirono T, Takahashi M, Nakashima S (2003) In situ visualization of fluid flow image within deformed rock by X-ray CT. Eng Geol 70:37–46

    Article  Google Scholar 

  • Kawakata H, Cho A, Kiyama T, Yanagidani T, Kusunose K, Shimada M (1999) Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophysics 313:293–305

    Article  Google Scholar 

  • Lee DH, Juang CH, Chen JW, Lin HM, Shieh WH (1999) Stress paths and mechanical behavior of a sandstone in hollow cylinder tests. Int J Rock Mech Min Sci 36:857–870

    Article  Google Scholar 

  • Meier T, Rybacki E, Backers T, Dresen G (2015) Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale. Rock Mech Rock Eng 48(4):1535–1546

    Article  Google Scholar 

  • Mogi K (1966) Some precise measurements of fracture strength of rocks under uniform compressive stress. Rock Mech Eng Geol 4:41–55

    Google Scholar 

  • Sufian A, Russell AR (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT. Int J Rock Mech Min Sci 57:119–131

    Google Scholar 

  • Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102(B2):3009–3025

    Article  Google Scholar 

  • Yang SQ (2016) Experimental study on deformation, peak strength and crack damage behavior of hollow sandstone under conventional triaxial compression. Eng Geol 213:11–24

    Article  Google Scholar 

  • Yang SQ, Jiang YZ, Xu WY, Chen XQ (2008) Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct 45:4796–4819

    Article  Google Scholar 

  • Yang SQ, Ranjith PG, Gui YL (2015) Experimental study of mechanical behavior and X-ray micro CT observations of sandstone under conventional triaxial compression. Geotech Test J 38(2):179–197

    Article  Google Scholar 

  • Yang SQ, Ju Y, Gao F, Gui YL (2016) Strength, deformability and X-ray micro-CT observations of deeply buried marble under different confining pressures. Rock Mech Rock Eng 49(11):4227–4244

    Article  Google Scholar 

  • Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanics behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197

    Article  Google Scholar 

  • Zhao GF, Russell AR, Zhao XB, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro CT. Int J Solids Struct 51:1587–1600

    Article  Google Scholar 

  • Zhou XP, Zhang YX, Ha QL (2008) Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading. Theor Appl Fract Mec 50:49–56

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (2015XKZD05). I also would like to express my sincere gratitude to the editor Giovanni Barla, the associate editor Li Jian-Chun and two anonymous reviewers for their valuable comments, which have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Qi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SQ. Fracturing Mechanism of Compressed Hollow-Cylinder Sandstone Evaluated by X-ray Micro-CT Scanning. Rock Mech Rock Eng 51, 2033–2053 (2018). https://doi.org/10.1007/s00603-018-1466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1466-5

Keywords

Navigation