Skip to main content
Log in

Feasibility Study on the Utilization of Serpentine Residues for Mg(OH)2 Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Serpentinite tailings from La Nationale chrysotile mine in Thetford Mines (Quebec, Canada) were studied to extract the Mg contained therein. The study began with an initial chemical characterization of the residue to determine the Mg concentration in the different grain size fractions. The resulting Mg-containing fractions were leached under a variety of parameters such as type of acid, acid concentration, treatment time, and temperature, and the obtained solution was neutralized with NaOH for the selective recovery of the metals. The results of this study were used to design a process to obtain Mg as a marketable chemical. The tested process consists of a leaching step using an H2SO4 solution followed by the purification of the leachates using NaOH at pH 8 and Mg recovery with NaOH at pH 10. A final product composed of mirabilite (Na2SO4) and brucite (Mg(OH)2) was obtained. The procedure was tested, and its economic viability was discussed. The approach proved to be technically feasible, promoting clean production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aïtcin, P.C., Delvaux, P.: L’amiante Chrysotile. Université de Sherbrooke, Sherbrooke (1978)

    Google Scholar 

  2. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF): Standard Methods for the Examination of Water and Wastewater, 20th edn. APHA, Washington, DC (1999)

    Google Scholar 

  3. Apostolidis, C.I., Distin, P.A.: The kinetics of the sulphuric acid leaching of nickel and magnesium from reduction roasted serpentine. Hydrometallurgy 3, 181–196 (1978)

    Article  Google Scholar 

  4. Bates, T.F., Comer, J.J.: Further observations on the morphology of chrysotile and halloysite1. Clays Clay Miner. 6, 237–248 (1957)

    Article  Google Scholar 

  5. Brookins, D.G.: Eh-pH Diagrams for Geochemistry. Springer, Berlin (1988)

    Book  Google Scholar 

  6. Brown, R.E.: Magnola: The Noranda magnesium process. Light Metal Age 56(1/2), 60–63 (1998)

    Google Scholar 

  7. Cecchi, E.:. Revalorisation des résidus d’extraction d’amiante blanc par la production de chlorure de magnésium via la réaction de carbochloruration. Ph.D. Thesis, INRS-ETE, Université du Québec, Québec (2008)

  8. Claassen, J.O., Meyer, E.H.O., Rennie, J., Sandenbergh, R.F.: Iron precipitation from zinc-rich solutions: defining the Zincor Process. Hydrometallurgy 67(1), 87–108 (2002)

    Article  Google Scholar 

  9. Dutrizac, J.E., Chen, T.T., White, C.W.: Fundamentals of serpentine leaching in hydrochloric acid media. In: Kaplan, H.I., Hryn, J.N., Clow, B.B. (eds.) Magnesium Technology. TMS Annual Meeting, The Minerals, Metals and Materials Society, Nashville, pp. 41–51 (2000)

    Google Scholar 

  10. El-Leef, E.S.M.A., Abeidu, A.E.M., Mahdy, A.E.M.: Utilization of serpentine ore for production of magnesium sulphate. World J. Eng. Pure Appl. Sci. 2(2), 31–39 (2012)

    Google Scholar 

  11. Fedoročková, A., Hreus, M., Raschman, P., Sučik, G.: Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Miner. Eng. 32, 1–4 (2012)

    Article  Google Scholar 

  12. Fouda, M.F.R., Amin, R.E.-S., Abd-Elzaher, M.M.: Extraction of magnesia from Egyptian serpentine ore via reaction with different acids. I. Reaction with sulfuric acid. Bull. Chem. Soc. Jpn. 69(7), 1907–1912 (1996)

    Article  Google Scholar 

  13. Friedrich H.E., Mordike B.L. (2006) Magnesium Technology-Metallurgy, Design Data, Applications. Springer, Berlin

    Google Scholar 

  14. Gladikova, L., Teterin, V., Freidlina, R.: Production of magnesium oxide from solutions formed by acid processing of serpentinite. Russ. J. Appl. Chem. 81(5), 889–891 (2008)

    Article  Google Scholar 

  15. Habashi, F.: Textbook of Hydrometallurgy, 2nd edn. Département des mines, métallurgies et génie des matériaux, Université Laval, Sainte-Foy (1999)

    Google Scholar 

  16. Habashi, F.: Magnesium. Handbook of Extractive Metallurgy. Wiley, Weinheim (1997)

    Google Scholar 

  17. Harben, P.W., Smith, C. Jr: Industrial minerals and rocks; commodities, markets and uses. SME, Littleton, pp. 679–683 (2006)

  18. Karidakis, T., Agatzini-Leonardou, S., Neou-Syngouna, P.: Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy 76, 105–114 (2005)

    Article  Google Scholar 

  19. Kim, J.: Magnesium Extraction from Asbestos Mine Tailings: A Report. Howard Manosh Vermont Asbestos Group, Vermont Geological Survey, Department of Environmental Conservation, Waterbury (1998)

    Google Scholar 

  20. Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, B.L., Sharp, D.H.: Carbon dioxide disposal in carbonate minerals. Energy. 20, 1153–1170 (1995)

    Article  Google Scholar 

  21. Levenspiel, O.: Chemical Reaction Engineering. Wiley, New York (1978)

    Google Scholar 

  22. Luce, R. W., Bartlett, R. W., Parks, G. A.: Dissolution kinetics of magnesium silicates. Geochim. Et Cosmochim. Acta. 36(1), 35–50 (1972)

    Article  Google Scholar 

  23. Monhemius, A. J.: Precipitation diagrams for metal hydroxides, sulfates, arsenates and phosphates. T. I. Min. Metall. C 86, C202–C206 (1977)

    Google Scholar 

  24. Mossman, B.T., Bignon, J., Corn, M., Seaton, A., Gee, J.B.L.: Asbestos: scientific developments and implications for public policy. Science 247(4940), 294–301 (1990)

    Article  Google Scholar 

  25. Nagamori, M., Boivin, J.A.: Technico-economic simulation for the HCl-leaching of hybrid serpentine and magnesite feeds. Can. Metall. Q. 40(1), 47–60 (2001)

    Article  Google Scholar 

  26. Nduagu, E., Björklöf, T., Fagerlund, J., Mäkilä, E., Salonen, J., Geerlings, H., Zevenhoven, R.: Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization—Part 2: Mg extraction modeling and application to different Mg silicate rocks. Miner. Eng. 30, 87–94 (2012). doi:10.1016/j.mineng.2011.12.002

    Article  Google Scholar 

  27. Pasquier, L.-C., Mercier, G., Blais, J.-F., Cecchi, E., Kentish, S.: Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. Environ. Sci. Technol. 48, 5163–5170 (2014)

    Article  Google Scholar 

  28. Petrovski, P., Gligoric, M.: Usage of serpentine for MgO and active SiO2 production. In: Vincenzini, P.. (ed.), High Tech Ceramics. Elsevier, Amsterdam, pp. 2267–2278 (1987)

    Google Scholar 

  29. Pigg, R.: Uses of chrysotile asbestos. Ann. Occup. Hyg. 38(4), 453–458 (1994)

    Google Scholar 

  30. Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineers, Houston (1974)

    Google Scholar 

  31. Ramachandra Rao, S.: Resource Recovery and Recycling from Metallurgical wastes. Waste Management Series, vol. 7. Elsevier, Amsterdam (2006)

  32. Ray, M.S., Sneesby, M.G. Chemical Engineering Design Project: A Case Study Approach, 2nd edn. Gordon and Breach Science Publishers, Amsterdam (1998)

    Google Scholar 

  33. Schrier, H.: Asbestos in the Natural ENVIRONMENT. Studies in Environmental Science. No. 37. Elsevier, Amsterdam (1989)

    Google Scholar 

  34. Skinner, H.C.W., Ross, M., Frondel, C.: Asbestos and Other Fibrous Materials. Oxford University Press, New York (1988)

    Google Scholar 

  35. Taubert, L.: Hydrochloric attack of serpentinites: Mg2+ leaching from serpentinites. Magnes. Res. 13(3), 167–173 (2000)

    Google Scholar 

  36. Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.J., Zevenhoven, R.: Dissolution of natural serpentinite in mineral and organic acids. Int. J. Miner. Process. 83, 36–46 (2007)

    Article  Google Scholar 

  37. U.S. Department of Health and Human Services: 12th Report on Carcinogens. Public Health Service, National Toxicology Program, Research Triangle Park (2011)

  38. United States Environmental Protection Agency (USEPA): Toxicity characteristic leaching procedure, method 1311. http://www.epa.gov/wastes/hazard/testmethods/SW846/pdfs/1311.pdf (1992)

  39. Veblen, D.R., Wylie, A.G.: Mineralogy of amphiboles and 1:1 layer silicates. In: Guthrie, G.D., Mossman, B.T. (eds.) Health Effects of Mineral Dusts. Reviews in Mineralogy, vol. 28, pp. 61–137. Mineralogical Society of America, Bookcrafters Inc., Chelsea (1993)

    Google Scholar 

  40. Wulandari, W., Brooks, G., Rhamdhani, M., Monaghan, B.: Magnesium: current and alternative production routes. The 40th Chemeca: Australasian Conference on Chemical Engineering, September 26–29, Adelaide (2010)

  41. Yoo, K., Kim, B.S., Kim, M.S., Lee, J.C., Jeong, J.: Dissolution of magnesium from serpentine mineral in sulfuric acid solution. Mater. Trans. 50(5), 1225–1230 (2009)

    Article  Google Scholar 

  42. Zhang, Q., Sugyiama, K., Saito, F.: Enhancement of acid extraction of magnesium and silicon from serpentine by mechanochemical treatment. Hydrometallurgy 45(3), 323–331 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Pasquier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra, C., Chouinard, S., Pasquier, L.C. et al. Feasibility Study on the Utilization of Serpentine Residues for Mg(OH)2 Production. Waste Biomass Valor 9, 1921–1933 (2018). https://doi.org/10.1007/s12649-017-9926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9926-9

Keywords

Navigation