Skip to main content
Log in

Laboratory study on geotechnical characteristics of marine coral clay

海洋珊瑚黏土岩土特性的室内研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The hydraulic reclamation coral clay is a new type of clay, formed during the sorting process of coral island reef reclamation. The foundation of the hydraulic reclamation coral reef consists of coral sand, silt, and clay. The part of the particles with particle size less than 0.075 mm contain more than 50% forms clay. As a new type of clay, the geotechnical properties were rarely reported in previous studies. In this paper, the physical and mechanical properties, microstructure and mineral composition were comprehensively researched by a series of laboratory tests. The results show that coral clay is a low liquid limit clay with high pore ratio and high saturation. From the aspect of mineral compositions, the coral clay studied consists of calcite and aragonite, while the chemical composition of it is calcium carbonate. The void ratio has a significant effect on the compressive properties of coral clay. With the increase of the void ratio, the compression coefficient a1–2 and compression index Cc gradually increase, and the compression modulus Es gradually decreases. The undrained stress — strain curve of coral clay shows a strain-softening behavior, and the peak strength and residual strength are positively linear correlated with confining pressure.

摘要

吹填珊瑚黏土是一种新型黏土, 是珊瑚岛礁吹填过程中分选形成的特殊黏土。新的水力吹填工 程珊瑚礁地基, 包括珊瑚砂、淤泥和黏土。粒径小于75 µm的且含量占50%以上这部分形成黏土。作 为一种新型黏土, 其岩土工程性质在以往的研究中鲜有报道。本文通过一系列室内试验, 对其力学性 能、微观结构和矿物组成进行了综合研究。结果表明:珊瑚黏土是一种高孔率、高饱和度的低液限黏 土。珊瑚黏土的矿物成分为方解石和文石, 化学成分为碳酸钙。孔隙比对珊瑚黏土的压缩性能有显著 影响。随着孔隙比的增大, 压缩系数a1-2和压缩指数Cc逐渐增大, 压缩模量Es逐渐减小。珊瑚黏土的不 排水应力−应变曲线表现出应变软化特性, 峰值强度和残余强度与围压呈线性正相关。在试验围压范 围内, 峰值强度与残余强度的折减为26.8%~36.1%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEE J Y, KIM G Y, LEE C, et al. Characterization of deep sea sediments from the continental margin off Costa Rica [J]. Ocean Engineering, 2016, 111: 13–21. DOI: https://doi.org/10.1016/j.oceaneng.2015.10.036.

    Article  Google Scholar 

  2. LE T M H, EIKSUND G R, STRØM P J, et al. Geological and geotechnical characterisation for offshore wind turbine foundations: A case study of the Sheringham Shoal wind farm [J]. Engineering Geology, 2014, 177: 40–53. DOI: https://doi.org/10.1016/j.enggeo.2014.05.005.

    Article  Google Scholar 

  3. XU Yuan-qin, LI Pei-ying, LI Ping, et al. Physical and mechanical properties of fine-grained soil in the Zhejiang-Fujian coastal area, China [J]. Marine Georesources & Geotechnology, 2011, 29(4): 333–345. DOI: https://doi.org/10.1080/1064119X.2011.558373.

    Article  Google Scholar 

  4. LIU S Y, SHAO G H, DU Y J, et al. Depositional and geotechnical properties of marine clays in Lianyungang, China [J]. Engineering Geology, 2011, 121(1, 2): 66–74. DOI: https://doi.org/10.1016/j.enggeo.2011.04.014.

    Article  Google Scholar 

  5. LEE C, YUN T S, LEE J S, et al. Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea [J]. Engineering Geology, 2011, 117(1, 2): 151–158. DOI: https://doi.org/10.1016/j.enggeo.2010.10.014.

    Article  Google Scholar 

  6. YAN W M, MA Yong-feng. Geotechnical characterization of Macao marine deposits [J]. Engineering Geology, 2010, 113(1–4): 62–69. DOI: https://doi.org/10.1016/j.enggeo.2010.03.001.

    Article  Google Scholar 

  7. LONG M, GUDJONSSON G, DONOHUE S, et al. Engineering characterisation of Norwegian glaciomarine silt [J]. Engineering Geology, 2010, 110(3, 4): 51–65. DOI: https://doi.org/10.1016/j.enggeo.2009.11.002.

    Article  Google Scholar 

  8. DIAS C R R, ALVES A M L. Geotechnical properties of the Cassino Beach mud [J]. Continental Shelf Research, 2009, 29(3): 589–596. DOI: https://doi.org/10.1016/j.csr.2008.09.015.

    Article  Google Scholar 

  9. RAJASEKARAN G, MURALI K, SRINIVASARAGHAVAN R. Microfabric, chemical and mineralogical study of Indian marine clays [J]. Ocean Engineering, 1998, 26(5): 463–483. DOI: https://doi.org/10.1016/S0029-8018(98)00004-3.

    Article  Google Scholar 

  10. RAJASEKARAN G, ESSAKU S, MATHEWS P K. Physico-chemical and mineralogical studies on Cochin marine clays [J]. Ocean Engineering, 1994, 21(8): 771–780. DOI: https://doi.org/10.1016/0029-8018(94)90052-3.

    Article  Google Scholar 

  11. BO M W, ARULRAJAH A, SUKMAK P, et al. Mineralogy and geotechnical properties of Singapore marine clay at Changi [J]. Soils and Foundations, 2015, 55(3): 600–613. DOI: https://doi.org/10.1016/j.sandf.2015.04.011.

    Article  Google Scholar 

  12. LI Ling-ling, DAN Han-bo, WANG Li-zhong. Undrained behavior of natural marine clay under cyclic loading [J]. Ocean Engineering, 2011, 38(16): 1792–1805. DOI: https://doi.org/10.1016/j.oceaneng.2011.09.004.

    Article  Google Scholar 

  13. LOW H E, PHOON K K, TAN T S, et al. Effect of soil microstructure on the compressibility of natural Singapore marine clay [J]. Canadian Geotechnical Journal, 2008, 45(2): 161–176. DOI: https://doi.org/10.1139/t07-075.

    Article  Google Scholar 

  14. SAEIDASKARI J, ALIBOLANDI M, AZIZKANDI A S. Undrained monotonic and cyclic behavior of Qeshm calcareous sand [J]. Marine Georesources & Geotechnology, 2021, 39(7): 798–811. DOI: https://doi.org/10.1080/1064119X.2020.1764678.

    Article  Google Scholar 

  15. SHAHNAZARI H, REZVANI R. Effective parameters for the particle breakage of calcareous sands: An experimental study [J]. Engineering Geology, 2013, 159: 98–105. DOI: https://doi.org/10.1016/j.enggeo.2013.03.005.

    Article  Google Scholar 

  16. WANG Gang, ZHA Jing-jing. Particle breakage evolution during cyclic triaxial shearing of a carbonate sand [J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106326. DOI: https://doi.org/10.1016/j.soildyn.2020.106326.

    Article  Google Scholar 

  17. LV Y, LI Xin, WANG Yuan. Particle breakage of calcareous sand at high strain rates [J]. Powder Technology, 2020, 366: 776–787. DOI: https://doi.org/10.1016/j.powtec.2020.02.062.

    Article  Google Scholar 

  18. WANG Xin-zhi, WENG Yi-ling, WEI Hou-zhen, et al. Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea [J]. Engineering Geology, 2019, 261: 105274. DOI: https://doi.org/10.1016/j.enggeo.2019.105274.

    Article  Google Scholar 

  19. LÜ Y, WANG Yuan, ZUO Dian-jun. Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand [J]. Powder Technology, 2019, 356: 21–30. DOI: https://doi.org/10.1016/j.powtec.2019.07.088.

    Article  Google Scholar 

  20. XIAO Yang, YUAN Zheng-xin, LÜ Y, et al. Fractal crushing of carbonate and quartz sands along the specimen height under impact loading [J]. Construction and Building Materials, 2018, 182: 188–199. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.112.

    Article  Google Scholar 

  21. GHAFGHAZI M, SHUTTLE D A, DEJONG J T. Particle breakage and the critical state of sand [J]. Soils and Foundations, 2014, 54(3): 451–461. DOI: https://doi.org/10.1016/j.sandf.2014.04.016.

    Article  Google Scholar 

  22. SHAHNAZARI H, REZVANI R. Effective parameters for the particle breakage of calcareous sands: An experimental study [J]. Engineering Geology, 2013, 159: 98–105. DOI: https://doi.org/10.1016/j.enggeo.2013.03.005.

    Article  Google Scholar 

  23. PENG Yu, LIU Han-long, LI Chi, et al. The detailed particle breakage around the pile in coral sand [J]. Acta Geotechnica, 2021, 16(6): 1971–1981. DOI: https://doi.org/10.1007/s11440-020-01089-2.

    Article  Google Scholar 

  24. WANG Kang-da, CHU Jian, WU Shi-fan, et al. Stress-strain behaviour of bio-desaturated sand under undrained monotonic and cyclic loading [J]. Géotechnique, 2021, 71(6): 521–533. DOI: https://doi.org/10.1680/jgeot.19.p.080.

    Article  Google Scholar 

  25. XIAO Peng, LIU Han-long, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand [J]. Canadian Geotechnical Journal, 2019, 56(12): 1849–1862. DOI: https://doi.org/10.1139/cgj-2018-0573.

    Article  Google Scholar 

  26. MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation [J]. Géotechnique, 2013, 63(4): 302–312. DOI: https://doi.org/10.1680/geot.sip13.p.019.

    Article  Google Scholar 

  27. CHENG Liang, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation [J]. Canadian Geotechnical Journal, 2013, 50(1): 81–90. DOI: https://doi.org/10.1139/cgj-2012-0023.

    Article  Google Scholar 

  28. LI Yu-bo, LI Bo, GONG Jian. Revisiting the liquefaction resistance of calcareous sand using X-ray CT [J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106428. DOI: https://doi.org/10.1016/j.soildyn.2020.106428.

    Article  Google Scholar 

  29. RUI Sheng-jie, GUO Zhen, SI Tong-ling, et al. Effect of particle shape on the liquefaction resistance of calcareous sands [J]. Soil Dynamics and Earthquake Engineering, 2020, 137: 106302. DOI: https://doi.org/10.1016/j.soildyn.2020.106302.

    Article  Google Scholar 

  30. XIAO Peng, LIU Han-long, XIAO Yang, et al. Liquefaction resistance of bio-cemented calcareous sand [J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 9–19. DOI: https://doi.org/10.1016/j.soildyn.2018.01.008.

    Article  Google Scholar 

  31. WANG Shuai, LEI Xue-wen, MENG Qing-shan, et al. Model tests of single pile vertical cyclic loading in calcareous sand [J]. Marine Georesources & Geotechnology, 2021, 39(6): 670–681. DOI: https://doi.org/10.1080/1064119X.2020.1744048.

    Article  Google Scholar 

  32. PENG Yu, LIU Jia-yi, DING Xuan-ming, et al. Performance of X-section concrete pile group in coral sand under vertical loading [J]. China Ocean Engineering, 2020, 34(5): 621–630. DOI: https://doi.org/10.1007/s13344-020-0056-y.

    Article  Google Scholar 

  33. QIN Yue, MENG Qing-shan, WANG Ren, et al. Model experimental research on uplift single pile in calcareous sand of South China Sea [J]. Marine Georesources & Geotechnology, 2017, 35(5): 653–660. DOI: https://doi.org/10.1080/1064119x.2016.1215362.

    Article  Google Scholar 

  34. SONG Y S, HONG S. Effect of clay minerals on the suction stress of unsaturated soils [J]. Engineering Geology, 2020, 269: 105571. DOI: https://doi.org/10.1016/j.enggeo.2020.105571.

    Article  Google Scholar 

  35. YE W M, XU L, YE B, et al. Experimental investigation on gas migration in saturated Shanghai soft clay [J]. Engineering Geology, 2017, 222: 20–28. DOI: https://doi.org/10.1016/j.enggeo.2017.03.024.

    Article  Google Scholar 

  36. CAI Guo-jun, PUPPALA A J, LIU Song-yu. Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays [J]. Engineering Geology, 2014, 171: 96–103. DOI: https://doi.org/10.1016/j.enggeo.2013.12.012.

    Article  Google Scholar 

  37. CAI Guo-jun, LIU Song-yu, TONG Li-yuan. Field evaluation of deformation characteristics of a lacustrine clay deposit using seismic piezocone tests [J]. Engineering Geology, 2010, 116(3, 4): 251–260. DOI: https://doi.org/10.1016/j.enggeo.2010.09.006.

    Article  Google Scholar 

  38. TANAKA H, LOCAT J, SHIBUYA S, et al. Characterization of Singapore, bangkok, and ariake clays [J]. Canadian Geotechnical Journal, 2001, 38(2): 378–400. DOI: https://doi.org/10.1139/t00-106.

    Article  Google Scholar 

  39. LI Yan, LI An-chun, HUANG Peng, et al. Clay minerals in surface sediment of the north Yellow Sea and their implication to provenance and transportation [J]. Continental Shelf Research, 2014, 90: 33–40. DOI: https://doi.org/10.1016/j.csr.2014.01.020.

    Article  Google Scholar 

  40. WANG Xin-zhi, WANG Xing, JIN Zong-chuan, et al. Investigation of engineering characteristics of calcareous soils from fringing reef [J]. Ocean Engineering, 2017, 134: 77–86. DOI: https://doi.org/10.1016/j.oceaneng.2017.02.019.

    Article  Google Scholar 

Download references

Funding

Projects(51878103, 41831282, 51778092) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-ming Ding  (丁选明).

Additional information

Contributors

The research goal is proposed by JIANG Chun-yong and DING Xuan-ming. The experiment was completed by JIANG Chun-yong and CHEN Xin-sheng. FANG Hua-qiang assisted in sampling. JIANG Chun-yong wrote the first draft and ZHANG Yu proofread it.

Conflict of interest

JIANG Chun-yong, DING Xuan-ming, CHEN Xin-sheng, FANG Hua-qiang and ZHANG Yu declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Cy., Ding, Xm., Chen, Xs. et al. Laboratory study on geotechnical characteristics of marine coral clay. J. Cent. South Univ. 29, 572–581 (2022). https://doi.org/10.1007/s11771-022-4900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4900-5

Key words

关键词

Navigation