Skip to main content
Log in

Consolidation and creep behaviors of two typical marine clays in China

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

This paper presents an experimental investigation into the deformation characteristics of two typical marine clays obtained from Dalian and Shanghai, respectively, in China. Three kinds of laboratory tests, i.e. conventional oedometer tests, one-dimensional and triaxial creep tests were carried out. The results obtained from consolidation tests demonstrate linear e−logσ v relationships for Shanghai clay at normally consolidated state, while partly or even global non-linear relationships for Dalian clay. The compression index C c for both clays follows the correlation of C c = 0.009(w L −10) where w L is the liquid limit of soil. The relationship between logk v (k v is the hydraulic conductivity of soil) and void ratio e is generally linear and the hydraulic conductivity change index \(C_{k_v }\) can be described by their initial void ratio for both clays. The secondary compressibility of Dalian clay lies in medium to high range and is higher than that of Shanghai clay which lies in the range of low to medium. Furthermore, based on drained triaxial creep tests, the stress-strain-time relationships following Mesri’s creep equation have been developed for Dalian and Shanghai clays which can predict the long-term deformation of both clays reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asaoka, A., Nakano, M., Noda, T. and Kaneda, K., 2000. Delayed compression/consolidation of natural clay due to degradation of soil structure, Soils Found., 40(3): 75–85.

    Article  Google Scholar 

  • Burland, J. B., 1990. On the compressibility and shear strength of natural clays, Géotechnique, 40(3): 329–378.

    Article  Google Scholar 

  • Fang, Y. G. and Gu, R. G., 2007. Experiment study on the effects of adsorbed water on rheological characteristics of soft clayey soil, Sci. Technol. Eng., 7(1): 73–78. (in Chinese)

    Google Scholar 

  • Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y. and Li, C., 2001. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China, Geomorphology, 41(2): 233–248.

    Article  Google Scholar 

  • Jiang, M. J., Hongo, T., Fukuda, M., Adachi, T., Oka, F., Shen, Z. J. and Xing, S. Y., 1998. Pre-failure behavior of deep-situated Osaka clay, China Ocean Eng., 12(4): 453–465.

    Google Scholar 

  • Jiang, M. J., Peng, L. C., Zhu, H. H., Lin, Y. X. and Huang, L. J., 2009. Macro- and micro- properties of two natural marine clays in China, China Ocean Eng., 23(2): 329–344.

    Google Scholar 

  • Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R., 1985. Stress-strain-strain rate relation for the compressibility of natural sensitive clays, Géotechnique, 35(2): 159–180.

    Article  Google Scholar 

  • Leroueil, S., Lerat, P., Hight, D. W. and Powell, J. J. M., 1992. Hydraulic conductivity of a recent estuarine silty clay at Bothkennar, Géotechnique, 42(2): 275–288.

    Article  Google Scholar 

  • Li, L. L., Dan, H. B. and Wang, L. Z., 2011. Undrained behavior of natural marine clay under cyclic loading, Ocean Eng., 38(16): 1792–1805.

    Article  Google Scholar 

  • Liu, M. D. and Carter, J. P., 2003. Volumetric deformation of natural clays, Int. J. Geomech., 3(2): 236–252.

    Article  Google Scholar 

  • Ma, D., 2007. A hypoplastic constitutive model for clays with meta-stable structure, Can. Geotech. J., 44(3): 363–375.

    Article  Google Scholar 

  • Mathew, P. K. and Rao, S. N., 1997. Influence of cations on compressibility behavior of a marine clay, J. Geotech. Geoenviron. Eng., 123(11): 1071–1073.

    Article  Google Scholar 

  • Mesri, G. and Castro, A., 1987. C a/C c concept and K 0 during secondary compression, J. Geotech. Eng., 113(3): 230–247.

    Article  Google Scholar 

  • Mesri, G. and Choi, Y. K., 1984. Discussion of “Time effects on the stress-strain behaviours of natural soft clays”, Géotechnique, 34(3): 439–442.

    Google Scholar 

  • Mesri, G., Rokhsar, A. and Bohor, B. F., 1975. Composition and compressibility of typical samples of Mexico city clay, Géotechnique, 25(3): 527–554.

    Article  Google Scholar 

  • Mesri, G., Febres-Cordero, E., Shields, D. R. and Castro, A., 1981. Shear stress-strain-time behaviour of clays, Géotechnique, 31(4): 537–552.

    Article  Google Scholar 

  • Rajasekaran, G., Murali, K. and Srinivasaraghavan, R., 1998. Microfabric, chemical and mineralogical study of Indian marine clays, Ocean Eng., 26(5): 463–483.

    Article  Google Scholar 

  • Rouainia, M., and Wood, D. M., 2000. A kinematic hardening constitutive model for natural clays with loss of structure, Géotechnique, 50(2): 153–164.

    Article  Google Scholar 

  • Shi, M. L. and Deng, X. J., 2005. On physical and mechanical behavior of natural marine intermediate deposits, China Ocean Eng., 19(1): 111–119.

    MathSciNet  Google Scholar 

  • Singh, A. and Mitchell, J., 1968. General stress-strain-time function for soils, J. Soil Mech. Found., 94(1): 21–46.

    Google Scholar 

  • Stanley, D. J. and Warne, A. G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise, Science, 265(5169): 228–231.

    Article  Google Scholar 

  • Tanaka, H., Locat, J., Shibuya, S., Soon, T. T. and Shiwakoti, D. R., 2001. Characterization of Singapore, Bangkok, and Ariake clays, Can. Geotech. J., 38(2): 378–400.

    Article  Google Scholar 

  • Tanaka, H., Ritoh, F. and Omukai, N., 2002. Geotechnical Properties of Clay Deposits of the Osaka Basin, International Workshop on Characteriatizon and Engineering Properties, Taylor & Francis, Singapore.

    Google Scholar 

  • Terzaghi, K., Peck, R. B. and Mesri, G., 1996. Soil Mechanics in Engineering Practice, John Wiley and Sons Publication.

    Google Scholar 

  • Torrance, J. K., 1999. Physical, chemical and mineralogical influences on the rheology of remoulded low-activity sensitive marine clay, Appl. Clay Sci., 14(4): 199–223.

    Article  Google Scholar 

  • Torrance, J. K. and Pirnat, M., 1984. Effect of pH on the rheology of marine clay from the site of the South Nation river, Canada, landslide of 1971, Clay. Clay Miner., 32(5): 384–390.

    Article  Google Scholar 

  • Yin, J. H., Zhu, J. G. and Graham, J., 2002. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: Theory and verification, Can. Geotech. J., 39(1): 157–173.

    Article  Google Scholar 

  • Yin, Z. Y. and Hicher, P. Y., 2008. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing, Int. J. Numer. Anal. Meth. Geomech., 32(12): 1515–1535.

    Article  MATH  Google Scholar 

  • Yin, Z. Y. and Karstunen, M., 2011. Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration, Acta. Mech. Solida. Sin., 24(3): 216–230.

    Article  Google Scholar 

  • Yin, Z. Y. and Wang, J. H., 2012. A one-dimensional strain-rate based model for soft structured clays, Sci. China Ser. E, 55(1): 90–100.

    Article  Google Scholar 

  • Yin, Z. Y., Chang, C. S., Karstunen, M. and Hicher, P. Y., 2010a. An anisotropic elastic viscoplastic model for soft soils, Int. J. Solids Struct., 47(5): 665–677.

    Article  MATH  Google Scholar 

  • Yin, Z. Y., Hattab, M. and Hicher, P. Y., 2011b. Multiscale modeling of a sensitive marine clay, Int. J. Numer. Anal. Meth. Geomech., 35(15): 1682–1702.

    Article  Google Scholar 

  • Yin, Z. Y., Karstunen, M. and Hicher, P. Y., 2010b. Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays, Soils Found., 50(2): 203–214.

    Article  Google Scholar 

  • Yin, Z. Y., Karstunen, M., Chang, C. S., Koskinen, M. and Lojander, M., 2011a. Modeling time-dependent behavior of soft sensitive clay, J. Geotech. Geoenviron. Eng., 137(11): 1103–1113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-jing Jiang  (蒋明镜).

Additional information

This work was financially supported by China National Funds for Distinguished Young Scientists (Grant No. 51025932), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1029), Ph. D. Programs Foundation of the Ministry of Education of China (Grant No. 20100072110048) and the National Natural Science Foundation of China (Grant No. 10972158).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Mj., Liu, Jd. & Yin, Zy. Consolidation and creep behaviors of two typical marine clays in China. China Ocean Eng 28, 629–644 (2014). https://doi.org/10.1007/s13344-014-0050-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-014-0050-3

Key words

Navigation