Skip to main content
Log in

Thermal performance analysis of building construction with insulated walls in summer days and nights

建筑结构保温墙体夏季昼夜热性能分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the present study, the insulation mechanism of building walls during the summer days and nights is investigated with a realistic approach to enhance their performance. A fiber layer, as a porous medium with air gaps, is used along the wall layers to decrease the energy loss. Meanwhile, the radiation heat flux variation during five days in a row has been considered for each side of the building, and it is tried to reach the optimum values for geometrical factors and find suitable insulation for each side of the building. A lattice Boltzmann method (LBM) based code is developed to simulate the actual chain of the heat transfer which consists of radiation, conduction, forced and natural convection combination within wall layers including fiber porous insulation. The results indicate that for the current insulation model, the effect of natural convection on the heat transfer is not negligible and the existence of the porous layer has caused a positive impact on the heat loss reduction by decreasing the circulation speed. Also, by using the optimum location and thickness for the insulation layer, it is showed that each side of the building has different rates of energy loss during a day, and for the appropriate insulation, they need to be evaluated separately.

摘要

对建筑墙体在夏季日夜的隔热机理进行了研究, 并提出了一种切实可行的方法来提高其性能。 沿壁层使用一种具有多孔结构的纤维层以减少能量损失。同时监测建筑各面连续5 d 的辐射热流变化, 以找到最佳的结构和合适的隔热层。建立了基于格子玻尔兹曼方法(LBM)的数值模拟程序, 模拟了含 纤维多孔保温材料的壁面内辐射、传导、强制对流和自然对流组合的实际传热链。结果表明:对于目 前的绝热模型, 自然对流在传热中的作用不可忽略, 多孔层的可降低循环速度和热损失。此外, 建筑 的各面在一天中的能量损失率也不同, 需要分别进行评估以确定合适的保温层。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Lattice speed

c s :

Sound speed

c p :

Specific heat at constant pressure

Da :

Darcy number

F :

Body forces

f :

Particle distribution function

f eq :

Equilibrium particle distribution function

g :

Energy distribution function

g eq :

Equilibrium energy distribution function

h :

Convective heat transfer coefficient

H :

Characteristic length in the y-direction

k :

Thermal conductivity

K :

Permeability

L :

Characteristic length in x-direction

M :

Transform matrix

Nu :

Average Nusselt number

\(\overline {Nu} \) :

Local Nusselt number

P :

Pressure

Pr :

Prandtl number

Gr :

Grashof number

T :

Temperature

U :

X-direction velocity

V :

Y-direction velocity

X, Y :

Cartesian coordinates

α :

Thermal diffusivity

β :

Thermal expansion coefficient

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Density

ω :

Weighting factor

ε :

Porosity

c:

Convection

e:

Emissivity

f:

Fluid-phase

α :

Lattice direction

s:

Solid-phase

env:

Environment

amb:

Ambient

i:

Indoor

o:

Outdoor

References

  1. YANG Hua, CHEN Wan-he, KONG Xiang-fei, RONG Xian. Fabrication, property characterization and thermal performance of composite phase change material plates based on tetradecanol-myristic acid binary eutectic mixture/expanded perlite and expanded vermiculite for building application [J]. Journal of Central South University, 2019, 26(9): 2578–2595. DOI: https://doi.org/10.1007/s11771-019-4196-2.

    Article  Google Scholar 

  2. LEE M J, LEE K G, SEO W D. Analyses on performances of heat and multilayer reflection insulators [J]. Journal of Central South University, 2012, 19(6): 1645–1656. DOI: https://doi.org/10.1007/s11771-012-1188-x.

    Article  Google Scholar 

  3. NIA M F, NASSAB SAG. Transient numerical simulation of annealing process in a conjugate combined radiation conduction heat transfer [J]. Journal of Central South University, 2020, 27(9): 2662–2672. DOI: https://doi.org/10.1007/s11771-020-4489-5.

    Article  Google Scholar 

  4. ALHEFNAWI M A M, ABDU-ALLAH AL-QAHTANY M. Thermal insulation efficiency of unventilated air-gapped facades in hot climate [J]. Arabian Journal for Science and Engineering, 2017, 42(3): 1155–1160. DOI: https://doi.org/10.1007/s13369-016-2370-5.

    Article  Google Scholar 

  5. RASHIDI S, ESFAHANI J A, KARIMI N. Porous materials in building energy technologies—A review of the applications, modelling and experiments [J]. Renewable and Sustainable Energy Reviews, 2018, 91: 229–247. DOI: https://doi.org/10.1016/j.rser.2018.03.092.

    Article  Google Scholar 

  6. WU Xun, SHI Jian-yong, LEI Hao, LI Yu-ping, OKINE L. Analytical solutions of transient heat conduction in multilayered slabs and application to thermal analysis of landfills [J]. Journal of Central South University, 2019, 26(11): 3175–3187. DOI: https://doi.org/10.1007/s11771-019-4244-y.

    Article  Google Scholar 

  7. TAN Zhi-qiang, HOWELL J R. Combined radiation and natural convection in a two-dimensional participating square medium [J]. International Journal of Heat and Mass Transfer, 1991, 34(3): 785–793. DOI: https://doi.org/10.1016/0017-9310(91)90125-X.

    Article  Google Scholar 

  8. BILAL ASHRAF M, HAYAT T, ALSAEDI A, SHEHZAD S A. Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation [J]. Journal of Central South University, 2015, 22(3): 1114–1123. DOI: https://doi.org/10.1007/s11771-015-2623-6.

    Article  Google Scholar 

  9. VIVEK V, SHARMA A K, BALAJI C. Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures [J]. International Journal of Thermal Sciences, 2012, 60: 70–84. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.04.021.

    Article  Google Scholar 

  10. MIKHAILENKO S A, MIROSHNICHENKO I V, SHEREMET M A. Thermal radiation and natural convection in a large-scale enclosure heated from below: Building application [J]. Building Simulation, 2021, 14(3): 681–691. DOI: https://doi.org/10.1007/s12273-020-0668-4.

    Article  Google Scholar 

  11. RAMESH N, VENKATESHAN S P. Effect of surface radiation on natural convection in a square enclosure [J]. Journal of Thermophysics and Heat Transfer, 1999, 13(3): 299–301. DOI: https://doi.org/10.2514/2.6458.

    Article  Google Scholar 

  12. MARTYUSHEV S G, SHEREMET M A. Numerical analysis of 3D regimes of natural convection and surface radiation in a differentially heated enclosure [J]. Journal of Engineering Thermophysics, 2015, 24(1): 22–32. DOI: https://doi.org/10.1134/S1810232815010038.

    Article  Google Scholar 

  13. CHOI H K, YOO G J, KIM C H. Characteristics of radiation and convection heat transfer in indirect near-infrared-ray heating chamber [J]. Journal of Central South University, 2011, 18(3): 731–738. DOI: https://doi.org/10.1007/s11771-011-0755-x.

    Article  Google Scholar 

  14. CHEN Hong, OOKA R, KATO S. Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction [J]. Building and Environment, 2008, 43(1): 18–30. DOI: https://doi.org/10.1016/j.buildenv.2006.11.039.

    Article  Google Scholar 

  15. ARMANDO G M, ARMANDO B B J, CHRISTIAN V C, RANGEL-HERNÁNDEZ V H, BELMAN-FLORES J M. Analysis of the conjugate heat transfer in a multi-layer wall including an air layer [J]. Applied Thermal Engineering, 2010, 30(6, 7): 599–604. DOI: https://doi.org/10.1016/j.applthermaleng.2009.11.004.

    Article  Google Scholar 

  16. MAHLIA T M I, IQBAL A. Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives [J]. Energy, 2010, 35(5): 2242–2250. DOI: https://doi.org/10.1016/j.energy.2010.02.011.

    Article  Google Scholar 

  17. OZEL M, PIHTILI K. Optimum location and distribution of insulation layers on building walls with various orientations [J]. Building and Environment, 2007, 42(8): 3051–3059. DOI: https://doi.org/10.1016/j.buildenv.2006.07.025.

    Article  Google Scholar 

  18. MAVROMATIDIS L E, BYKALYUK A, EL MANKIBI M, MICHEL P, SANTAMOURIS M. Numerical estimation of air gaps’ influence on the insulating performance of multilayer thermal insulation [J]. Building and Environment, 2012, 49: 227–237. DOI: https://doi.org/10.1016/j.buildenv.2011.09.029.

    Article  Google Scholar 

  19. POURESLAMI P, SIAVASHI M, MOGHIMI H, HOSSEINI M. Pore-scale convection-conduction heat transfer and fluid flow in open-cell metal foams: A three-dimensional multiple-relaxation time lattice Boltzmann (MRT-LBM) solution [J]. International Communications in Heat and Mass Transfer, 2021, 126: 105465. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105465.

    Article  Google Scholar 

  20. HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle [J]. Journal of Energy Storage, 2020, 28: 101235. DOI: https://doi.org/10.1016/j.est.2020.101235.

    Article  Google Scholar 

  21. AMI AHMADI H, VARIJI N, KAABINEJADIAN A, MOGHIMI M, SIAVASHI M. Optimal design and sensitivity analysis of energy storage for concentrated solar power plants using phase change material by gradient metal foams [J]. Journal of Energy Storage, 2021, 35: 102233. DOI: https://doi.org/10.1016/j.est.2021.102233.

    Article  Google Scholar 

  22. POURRAHMANI H, MOGHIMI M, SIAVASHI M, SHIRBANI M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs [J]. Applied Thermal Engineering, 2019, 150: 433–444. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.010.

    Article  Google Scholar 

  23. JELLE B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-Properties, requirements and possibilities [J]. Energy and Buildings, 2011, 43(10): 2549–2563. DOI: https://doi.org/10.1016/j.enbuild.2011.05.015.

    Article  Google Scholar 

  24. WALKER R, PAVÍA S. Thermal performance of a selection of insulation materials suitable for historic buildings [J]. Building and Environment, 2015, 94: 155–165. DOI: https://doi.org/10.1016/j.buildenv.2015.07.033.

    Article  Google Scholar 

  25. CAO Xuan, LIU Jun-jie, CAO Xiao-dong, LI Qian, HU E, FAN Feng-hua. Study of the thermal insulation properties of the glass fiber board used for interior building envelope [J]. Energy and Buildings, 2015, 107: 49–58. DOI: https://doi.org/10.1016/j.enbuild.2015.08.007.

    Article  Google Scholar 

  26. ZHENG Wei-xin, XIAO Xue-ying, CHANG Cheng-gong, DONG Jin-mei, WEN Jing, HUANG Qing, ZHOU Yuan, LI Ying. Characterizing properties of magnesium oxychloride cement concrete pavement [J]. Journal of Central South University, 2019, 26(12): 3410–3419. DOI: https://doi.org/10.1007/s11771-019-4263-8.

    Article  Google Scholar 

  27. BEJAN A. Convection heat transfer, [M]. third edition. New Jersey: Wiley, 2004

    MATH  Google Scholar 

  28. BRINKMAN H C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles [J]. Flow, Turbulence and Combustion, 1949, 1(1): 27–34. DOI: https://doi.org/10.1007/BF02120313.

    Article  Google Scholar 

  29. SCHEIDEGGER A E. The physics of flow through porous media [M]. 3rd edition. Toronto: University of Toronto Press, 1957. DOI: https://doi.org/10.3138/9781487583750.

    Book  Google Scholar 

  30. SIAVASHI M, GHASEMI K, YOUSOFVAND R, DERAKHSHAN S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet [J]. Solar Energy, 2018, 170: 252–262. DOI: https://doi.org/10.1016/j.solener.2018.05.020.

    Article  Google Scholar 

  31. PENG Cheng, MIN Hao-da, GUO Zhao-li, WANG Lianping. A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid [J]. Journal of Computational Physics, 2016, 326: 893–912. DOI: https://doi.org/10.1016/j.jcp.2016.09.031.

    Article  MathSciNet  Google Scholar 

  32. GHASEMI K, SIAVASHI M. Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM [J]. International Journal of Mechanical Sciences, 2020, 165: 105199. DOI: https://doi.org/10.1016/j.ijmecsci.2019.105199.

    Article  Google Scholar 

  33. MEZRHAB A, BOUZIDI M, LALLEMAND P. Hybrid lattice-Boltzmann finite-difference simulation of convective flows [J]. Computers & Fluids, 2004, 33(4): 623–641. DOI: https://doi.org/10.1016/j.compfluid.2003.05.001.

    Article  Google Scholar 

  34. JAMAL B, BOUKENDIL M, ABDELBAKI A, ZRIKEM Z. Numerical simulation of coupled heat transfer through double solid walls separated by an air layer [J]. International Journal of Thermal Sciences, 2020, 156: 106461. DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Ya-bin conducted simulations and provided the results, PEI Xing-wang provided the concept and wrote the first draft of paper, HAN Bing-zheng edited the draft ofmanuscript.

Corresponding author

Correspondence to Xing-wang Pei  (裴兴旺).

Additional information

Conflict of interest

CHEN Ya-bin, PEI Xing-wang, HAN Bing-zheng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yb., Pei, Xw. & Han, Bz. Thermal performance analysis of building construction with insulated walls in summer days and nights. J. Cent. South Univ. 28, 3613–3625 (2021). https://doi.org/10.1007/s11771-021-4879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4879-3

Key words

关键词

Navigation