Skip to main content

Conjugate Heat Transfer Analysis in a Composite Building Wall: Effect of Double Plaster-Brick-Glass Wool

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 292))

  • 573 Accesses

Abstract

The goal of this analysis is to explore heat transmission by three modes of heat transfer in a double plaster-brick-glass wool wall with a layer of air between them. The governing equations were solved using SIMPLE scheme of finite volume method (FVM). Effects of solar radiation (up to 1000 W/m2), variation of glass wool thickness (2–5 cm), and variation of thermal emissivity (0.1–0.9) on the heat transfer through the composite wall were examined. It was found that the surface radiation has contributed more than 60%, while the natural convection and conduction were not exceeding 23.08% and 3.39%, respectively, in the heat transfer process. The effect of variation in glass wool thickness was insignificant on the coefficient of overall heat transfer, but the inside wall temperature reduced by 0.25%. The mean temperature of the inner wall surface was reduced to 10.8%. The low emissivity structure surfaces (Ɛ < 0.3) offered strong thermal resistance in heat transfer. The results suggested that a 2 cm layer of glass wool insulation and low emissivity surface can significantly reduce the building energy usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sambou, V., Lartigue, B., Monchoux, F., Adj, M.: Modeling of the thermal performance of air-filled partitioned enclosures: effects of the geometry and thermal properties. J. Build. Phys. 39(4), 321–341 (2016)

    Article  Google Scholar 

  2. Ramesh, N., Venkateshan, S.P.: Effect of surface radiation on natural convection in a square enclosure. J. Thermophys. Heat Transf. 13(3), 299–301 (1999)

    Article  Google Scholar 

  3. Wang, H., Xin, S., Le Quéré, P.: Étude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d’air. Comptes Rendus Mécanique 334(1), 48–57 (2006)

    Article  Google Scholar 

  4. Giri, A., Pathak, K.K., Das, B.: A computational study of mixed convective heat and mass transfer from a shrouded vertical non-isothermal fin array during dehumidification process. Int. J. Heat Mass Transf. 91, 264–281 (2015)

    Article  Google Scholar 

  5. Das, B., Giri, A.: Second law analysis of an array of vertical plate-finned heat sink undergoing mixed convection. Int. Commun. Heat Mass Transf. 56, 42–49 (2014)

    Article  Google Scholar 

  6. Alvarado, R., Xamán, J., Hinojosa, J., Álvarez, G.: Interaction between natural convection and surface thermal radiation in tilted slender cavities. Int. J. Therm. Sci. 47(4), 355–368 (2008)

    Article  Google Scholar 

  7. Vivek, V., Sharma, A.K., Balaji, C.: Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures. Int. J. Therm. Sci. 60, 70–84 (2012)

    Article  Google Scholar 

  8. Alghamdi, A.A., Alharthi, H.A.: Multiscale 3D finite-element modelling of the thermal conductivity of clay brick walls. Constr. Build. Mater. 157, 1–9 (2017)

    Article  Google Scholar 

  9. Soubdhan, T., Feuillard, T., Bade, F.: Experimental evaluation of insulation material in roofing system under tropical climate. Sol. Energy 79(3), 311–320 (2005)

    Article  Google Scholar 

  10. Suman, E.A.B.M., Srivastava, R.K., Agarwal, E.: Experimental investigation on role of roof insulation of thermal comfort in building. l17-l22 (2007)

    Google Scholar 

  11. Aye, L., Charters, W.W., Fandiño, A.M., Robinson, J.R.: Thermal performance of sustainable energy features. Solar, 1–10 (2005)

    Google Scholar 

  12. Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., Mihalakakou, G.: Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 33(7), 719–729 (2001)

    Article  Google Scholar 

  13. Straube, J., Lstiburek, J., Pettit, B., Rudd, A., Schumacher, C., Baker, P., Ueno, K., Lukachko, A., Smegal, J., Grin, A., Neuhauser, K.: Building America special research project: high R-value enclosures for high performance residential buildings in all climate zone. Building America Report—1005, 29 Oct. (2010)

    Google Scholar 

  14. Boukendil, M., Abdelbaki, A., Zrikem, Z.: Numerical simulation of coupled heat transfer through double hollow brick walls: effects of mortar joint thickness and emissivity. Appl. Therm. Eng. 125, 1228–1238 (2017)

    Article  Google Scholar 

  15. Mobedi, M.: Conjugate natural convection in a square cavity with finite thickness horizontal walls. Int. Commun. Heat Mass Transf. 35(4), 503–513 (2008)

    Article  Google Scholar 

  16. Varol, Y., Oztop, H.F., Koca, A.: Effects of inclination angle on natural convection in composite walled enclosures. Heat Transfer Eng. 32(1), 57–68 (2011)

    Article  Google Scholar 

  17. Zhang, W., Zhang, C., Xi, G.: Conjugate conduction-natural convection in an enclosure with time-periodic sidewall temperature and inclination. Int. J. Heat Fluid Flow 32(1), 52–64 (2011)

    Article  Google Scholar 

  18. Das, B., Giri, A.: Conjugate conduction and convection underneath a downward facing non-isothermal extended surface: a numerical study. Energy Convers. Manage. 88, 15–26 (2014)

    Article  Google Scholar 

  19. Koca, A., Oztop, H.F., Varol, Y., Mobedi, M.: Using of Bejan’s heatline technique for analysis of natural convection in a divided cavity with differentially changing conductive partition. Numer. Heat Transf. Part A: Appl. 64(4), 339–359 (2013)

    Article  Google Scholar 

  20. Das, B., Giri, A.: Non-Boussinesq laminar mixed convection in a non-isothermal fin array. Appl. Therm. Eng. 63(1), 447–458 (2014)

    Article  Google Scholar 

  21. Das, B., Giri, A.: Mixed convective heat transfer from vertical fin array in the presence of vortex generator. Int. J. Heat Mass Transf. 82, 26–41 (2015)

    Article  Google Scholar 

  22. Gossard, D., Lartigue, B.: Three-dimensional conjugate heat transfer in partitioned enclosures: determination of geometrical and thermal properties by an inverse method. Appl. Therm. Eng. 54(2), 549–558 (2013)

    Article  Google Scholar 

  23. Giri, A., Das, B.: A numerical study of entry region laminar mixed convection over shrouded vertical fin arrays. Int. J. Therm. Sci. 60, 212–224 (2012)

    Article  Google Scholar 

  24. Jamal, B., Boukendil, M., Abdelbaki, A., Zrikem, Z.: Numerical simulation of coupled heat transfer through double solid walls separated by an air layer. Int. J. Thermal Sci. 156, 106461 (2020)

    Google Scholar 

  25. Kurt, H.: The usage of air gap in the composite wall for energy saving and air pollution. Environ. Prog. Sustain. Energy 30(3), 450–458 (2011)

    Article  Google Scholar 

  26. Lacarrière, B., Lartigue, B., Monchoux, F.: Numerical study of heat transfer in a wall of vertically perforated bricks: influence of assembly method. Energy Build. 35(3), 229–237 (2003)

    Article  Google Scholar 

  27. Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method, 2007. EN ISO 6946

    Google Scholar 

  28. Jayamaha, S.E.G., Wijeysundera, N.E., Chou, S.K.: Measurement of the heat transfer coefficient for walls. Build. Environ. 31(5), 399–407 (2015)

    Article  Google Scholar 

  29. Huelsz, G., Barrios, G., Rojas, J.: Evaluation of heat transfer models for hollow blocks in whole-building energy simulations. Energy Build. 202, 109338 (2019)

    Google Scholar 

  30. Zhang, T., Yang, H.: Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes. Appl. Energy 250, 834–845 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the DST, India, for providing financial support to National Institute of Technology, Silchar (Sanction order no. TMD/CERI/BEE/2016/063). The authors are also thankful to the Department of Mechanical Engineering, NIT, Silchar, for providing computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nath, B., Roy, S., Gupta, A., Gogada, S. (2022). Conjugate Heat Transfer Analysis in a Composite Building Wall: Effect of Double Plaster-Brick-Glass Wool. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E. (eds) Modeling, Simulation and Optimization. Smart Innovation, Systems and Technologies, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-19-0836-1_48

Download citation

Publish with us

Policies and ethics