Skip to main content
Log in

Passive heat transfer enhancement of laminar mixed convection flow in a vertical dimpled tube

垂直凹坑管内层流混合对流的被动传热强化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices. In this work, laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated. Three-dimensional elliptical governing equations were solved using the finite-volume technique. For a given dimpled pitch, the effects of three different dimple heights (h/D=0.013, 0.027, 0.037) have been studied at different Richardson numbers (0.1, 1.0 and 1.5). The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer. Therefore, lower wall temperature is seen where the dimples are located. Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers. Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number. Using a dimpled tube enhances the heat transfer coefficient. However, the pressure drop is not important. For instance, in the case of Ri=1.5 and h/D=0.037, 20% gains in the heat transfer enhancement only costs 2.5% in the pressure loss. In general, it is recommended using a dimpled tube where the effects of buoyancy forces are important.

摘要

垂直管的传热强化对许多换热器和热设备的热性能起着重要的作用。本文对垂直凹坑管中气流 的层流混合对流进行了数值研究。采用有限体积法求解三维椭圆控制方程。对给定的凹坑间距, 在不 同理查森数(0.1,1 和1.5)下, 研究了三种不同凹坑高度(h/d= 0.013,0.027, 0.037)对凹坑间距的影响。 在凹坑附近产生的涡流破坏了热边界层, 0.037)对凹坑间距的影响。 在凹坑附近产生的涡流破坏了热边界层, 凹坑处的壁温较低。由于浮力的作用, 近壁区域的流体流速显著增加。这种在近壁区域的加速使凹坑在理查森数较高时更有效。采用凹坑管 提高了传热系数, 但压降并不明显。在Ri=1.5, h/d=0.037 的情况下, 传热强化增加20%, 但压力只 损失2.5%。一般来说, 在浮力的影响较大的情况下, 推荐使用凹坑管。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J/(kg·K))

d :

Tube diameter (m)

g :

Acceleration of gravity (m/s2)

Gr :

Grashof number gβq″D4 (kv2)

H :

Heat transfer coefficient (W/(m2·K))

h :

Height of the dimples (m)

k :

Thermal conductivity

L :

Tube length (m)

Nu :

Nusselt number

P :

Pressure (Pa)

p :

Pitch of the roughs (m)

Pe :

Peclet number

Pr :

Prandtl number

q″ :

Uniform heat flux (W/m2)

r :

Radial coordinate

R :

Radius

Re :

Reynolds number

Ri :

Richardson number

T :

Temperature (K)

T * :

Dimensionless temperature (T−Tw)/(2q′k/D)

v, u :

Velocity (m/s)

r * :

r/d

z :

Axial coordinate

z* :

z/d

α :

Thermal diffusivity

β :

Volumetric expansion coefficient (K−1)

θ :

Tangential coordinate

μ :

Dynamic viscosity (N·m·s−2)

ν :

Kinematic viscosity of the fluid (m2/s)

ρ :

Fluid density (kg · m−3)

φ :

Loss function

b:

Bulk

c:

Center line

i, 0:

Inlet condition

r:

Rough

s:

Smooth

w:

Wall

References

  1. BHATTACHARYYA S, SAHA S, SAHA S K. Laminar flow heat transfer enhancement in a circular tube having integral transverse rib roughness and fitted with centre-cleared twisted-tape [J]. Experimental Thermal and Fluid Science, 2013, 44: 727–735. DOI: https://doi.org/10.1016/j.expthermflusci.2012.09.016.

    Article  Google Scholar 

  2. SAHA S K, BHATTACHARYYA S, PAL P K. Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with center-cleared twisted-tape [J]. Experimental Thermal and Fluid Science, 2012, 41: 121–129. DOI: https://doi.org/10.1016/j.expthermflusci.2012.04.004.

    Article  Google Scholar 

  3. BHATTACHARYYA S, SAHA S K. Thermohydraulics of laminar flow through a circular tube having integral helical rib roughness and fitted with centre-cleared twisted-tape [J]. Experimental Thermal and Fluid Science, 2012, 42: 154–162. DOI: https://doi.org/10.1016/j.expthermflusci.2012.05.002.

    Article  Google Scholar 

  4. NI Ming-long, CHEN Ya-ping, DONG Cong, WU Jia-feng. Numerical simulation of heat transfer and flow of cooling air in triangular wavy fin channels [J]. Journal of Central South University, 2014, 21(7): 2759–2765. DOI: https://doi.org/10.1007/s11771-014-2238-3.

    Article  Google Scholar 

  5. ROCHA A D, BANNWART A C, GANZAROLLI M M. Numerical and experimental study of an axially induced swirling pipe flow [J]. International Journal of Heat and Fluid Flow, 2015, 53: 81–90. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2015.02.003.

    Article  Google Scholar 

  6. ISMAEL M A. Forced convection in partially compliant channel with two alternated baffles [J]. International Journal of Heat and Mass Transfer, 2019, 142: 118455. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118455.

    Article  Google Scholar 

  7. SHEIKHOLESLAMI M, JAFARYAR M, SAID Z, ALSABERY A I, BABAZADEH H, SHAFEE A. Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach [J]. Applied Thermal Engineering, 2021, 182: 115935. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115935.

    Article  Google Scholar 

  8. NIKOOZADEH A, BEHZADMEHR A, PAYAN S. Numerical investigation of turbulent heat transfer enhancement using combined propeller-type turbulator and nanofluid in a circular tube [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1029–1044. DOI: https://doi.org/10.1007/s10973-019-08578-x.

    Article  Google Scholar 

  9. YAN Ke, GE Pei-qi, ZHAI Qiang. A comprehensive comparison on vibration and heat transfer of two elastic heat transfer tube bundles [J]. Journal of Central South University, 2015, 22(1): 377–385. DOI: https://doi.org/10.1007/s11771-015-2532-8.

    Article  Google Scholar 

  10. CHAI Lei, TASSOU S. A review of airside heat transfer augmentation with vortex generators on heat transfer surface [J]. Energies, 2018, 11(10): 2737. DOI: https://doi.org/10.3390/en11102737.

    Article  Google Scholar 

  11. ASIAEI S, ZADEHKAFI A, SIAVASHI M. Multi-layered porous foam effects on heat transfer and entropy generation of nanofluid mixed convection inside a two-sided lid-driven enclosure with internal heating [J]. Transport in Porous Media, 2019, 126(1): 223–247. DOI: https://doi.org/10.1007/s11242-018-1166-3.

    Article  MathSciNet  Google Scholar 

  12. MAGHSOUDI P, SIAVASHI M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 947–961. DOI: https://doi.org/10.1007/s10973-018-7335-3.

    Article  Google Scholar 

  13. SIAVASHI M, TALESH BAHRAMI H R, AMINIAN E, SAFFARI H. Numerical analysis on forced convection enhancement in an annulus using porous ribs and nanoparticle addition to base fluid [J]. Journal of Central South University, 2019, 26(5): 1089–1098. DOI: https://doi.org/10.1007/s11771-019-4073-z.

    Article  Google Scholar 

  14. RABAS T J, WEBB R L, THORS P, KIM N K. Influence of roughness shape and spacing on the performance of three-dimensional helically dimpled tubes [J]. Journal of Enhanced Heat Transfer, 1993, 1(1): 53–64. DOI: https://doi.org/10.1615/jenhheattransf.v1.i1.50.

    Article  Google Scholar 

  15. CHEN J, MÜLLER-STEINHAGEN H, DUFFY G G. Heat transfer enhancement in dimpled tubes [J]. Applied Thermal Engineering, 2001, 21(5): 535–547. DOI: https://doi.org/10.1016/S1359-4311(00)00067-3.

    Article  Google Scholar 

  16. VICENTE P G, GARCÍA A, VIEDMA A. Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes [J]. International Journal of Heat and Mass Transfer, 2002, 45(3): 543–553. DOI: https://doi.org/10.1016/S0017-9310(01)00170-3.

    Article  Google Scholar 

  17. CHANG S W, CHIANG K F, YANG T L, HUANG C C. Heat transfer and pressure drop in dimpled fin channels [J]. Experimental Thermal and Fluid Science, 2008, 33(1): 23–40. DOI: https://doi.org/10.1016/j.expthermflusci.2008.06.013.

    Article  Google Scholar 

  18. WANG Yu, HE Ya-ling, LEI Yong-gang, ZHANG Jie. Heat transfer and hydrodynamics analysis of a novel dimpled tube [J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1273–1281. DOI: https://doi.org/10.1016/j.expthermflusci.2010.05.008.

    Article  Google Scholar 

  19. THIANPONG C, EIAMSA-ARD P, WONGCHAREE K, EIAMSA-ARD S. Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator [J]. International Communications in Heat and Mass Transfer, 2009, 36(7): 698–704. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2009.03.026.

    Article  Google Scholar 

  20. KUKULKA D J, SMITH R, ZAEPFEL J. Development and evaluation of vipertex enhanced heat transfer tubes for use in fouling conditions [J]. Theoretical Foundations of Chemical Engineering, 2012, 46(6): 627–633. DOI: https://doi.org/10.1134/S0040579512060152.

    Article  Google Scholar 

  21. GARCÍA A, SOLANO J P, VICENTE P G, VIEDMA A. The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils [J]. Applied Thermal Engineering, 2012, 35: 196–201. DOI: https://doi.org/10.1016/j.applthermaleng.2011.10.030.

    Article  Google Scholar 

  22. ZHANG Liang, XIONG Wei, LIANG Zheng. Effect of outline curvature degree on heat transfer and flow characteristics inside dimpled tubes and spirally grooved tubes [J]. Heat Transfer, 2021, 50(4): 3996–4018. DOI: https://doi.org/10.1002/htj.22061.

    Article  Google Scholar 

  23. TURNOW J, KORNEV N, ZHDANOV V, HASSEL E. Flow structures and heat transfer on dimples in a staggered arrangement [J]. International Journal of Heat and Fluid Flow, 2012, 35: 168–175. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2012.01.002.

    Article  Google Scholar 

  24. LI Zhou-hang, WU Yu-xin, TANG Guo-li, LU Jun-fu, WANG Hua. Numerical analysis of buoyancy effect and heat transfer enhancement in flow of supercritical water through internally ribbed tubes [J]. Applied Thermal Engineering, 2016, 98: 1080–1090. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.007.

    Article  Google Scholar 

  25. SATO N, DE INAGAKI M, KANEDA K, HORINOUCHI N, OTA A. Numerical investigation of the effect of Prandtl number on heat transfer in a dimpled-channel flow [J]. International Journal of Heat and Fluid Flow, 2017, 68: 139–150. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2017.10.005.

    Article  Google Scholar 

  26. LI Ming, CHEN Xin, RUAN Xin-jian. Investigation of flow structure and heat transfer enhancement in rectangular channels with dimples and protrusions using large eddy simulation [J]. International Journal of Thermal Sciences, 2020, 149: 106207. DOI: https://doi.org/10.1016/j.ijthermalsci.2019.106207.

    Article  Google Scholar 

  27. REHMAN M M U, CHEEMA T A, AHMAD F, ABBAS A, MALIK M S. Numerical investigation of heat transfer enhancement and fluid flow characteristics in a microchannel heat sink with different wall/design configurations of protrusions/dimples [J]. Heat and Mass Transfer, 2020, 56(1): 239–255. DOI: https://doi.org/10.1007/s00231-019-02697-9.

    Article  Google Scholar 

  28. ALHAMID J, AL-OBAIDI A R. Effect of concavity configuration parameters on hydrodynamic and thermal performance in 3D circular pipe using Al2O3 nanofluid based on CFD simulation [J]. Journal of Physics: Conference Series, 2021, 1845(1): 012060. DOI: https://doi.org/10.1088/1742-6596/1845/1/012060.

    Google Scholar 

  29. YING Ping-ting, HE You, TANG He-sheng, REN Yan. Numerical and experimental investigation of flow and heat transfer in heat exchanger channels with different dimples geometries [J]. Machines, 2021, 9(4): 72. DOI: https://doi.org/10.3390/machines9040072.

    Article  Google Scholar 

  30. FOROOGHI P, HOOMAN K. Effect of buoyancy on turbulent convection heat transfer in corrugated channels — A numerical study [J]. International Journal of Heat and Mass Transfer, 2013, 64: 850–862. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.028.

    Article  Google Scholar 

  31. LI Ming, KHAN T S, AL HAJRI E, AYUB Z H. Geometric optimization for thermal-hydraulic performance of dimpled enhanced tubes for single phase flow [J]. Applied Thermal Engineering, 2016, 103: 639–650. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.141.

    Article  Google Scholar 

  32. HUANG Zhen, LI Zeng-yao, YU Guang-lei, TAO Wen-quan. Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes [J]. Applied Thermal Engineering, 2017, 114: 1287–1299. DOI: https://doi.org/10.1016/j.applthermaleng.2016.10.012.

    Article  Google Scholar 

  33. SOBHANI M, BEHZADMEHR A. Investigation of thermofluid behavior of mixed convection heat transfer of different dimples-protrusions wall patterns to heat transfer enhancement [J]. Heat and Mass Transfer, 2018, 54(11): 3219–3229. DOI: https://doi.org/10.1007/s00231-018-2356-9.

    Article  Google Scholar 

  34. GANJBAKHSH N, ALIKHANI S, BEHZADMEHR A. Numerical study of the effects of surface roughness on the mixed convection heat transfer of a laminar flow inside a horizontal curved dimpled tube [J]. Heat and Mass Transfer, 2019, 55(7): 2009–2016. DOI: https://doi.org/10.1007/s00231-018-2502-4.

    Article  Google Scholar 

  35. ZELDIN B, SCHMIDT F W. Closure to “discussions of developing flow with combined forced–free convection in an isothermal vertical tube’” [J]. Journal of Heat Transfer, 1972, 94(2): 221–223. DOI: https://doi.org/10.1115/1.3449903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The simulation and numerical calculations were done by M. TOOFANI SHAHRAKI and A. LAVAJOO. The first draft of the manuscript was prepared by M. TOOFANI SHAHRAKI. A. BEHZADMEHR supervised the work and edited the draft of manuscript.

Corresponding author

Correspondence to A. Behzadmehr.

Additional information

Conflict of interest

M. TOOFANI SHARAKI, A. LAVAJOO and A. BEHZADMEHR declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toofani Shahraki, M., Lavajoo, A. & Behzadmehr, A. Passive heat transfer enhancement of laminar mixed convection flow in a vertical dimpled tube. J. Cent. South Univ. 28, 3477–3490 (2021). https://doi.org/10.1007/s11771-021-4869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4869-5

Key words

关键词

Navigation