Skip to main content
Log in

Microwave pretreatment for enhanced selective nitric acid pressure leaching of limonitic laterite

微波预处理强化褐铁型红土镍矿的硝酸加压浸出

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

As clean energy, the microwave is commonly used to pretreat various ores. In this work, the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effects from microwave were systematically investigated. Results indicated that limonitic laterite had high microwave absorbance. After microwave pretreatment, the microstructure of the laterite became less aggregated and more porous and the main phase transformed from goethite to hematite that improved leaching in nitric acid (1.2 kg HNO3/kg ore); Ni, Co, Fe, and Mg extraction ratios were 95.2%, 98.1%, 1.8% and 15%, respectively, after leaching for 60 min at 200 °C and 500 r/min. Furthermore, in the process of goethite to hematite by microwave pretreatment, the nickel-containing mineral is activated, which makes nickel be leached easily. The leaching process has high Ni extraction ratio compared to that without microwave (82%) and conventional pretreatment (90.4%). Therefore, microwave pretreatment of limonitic laterite before nitric acid pressure leaching is an effective way to improve the selectivity and extraction of the leach.

摘要

微波作为一种清洁能源, 常用于矿石的预处理. 本文采用谐振腔微扰法测定了褐铁型红土镍矿 的微波介电性能, 系统地研究了微波活化处理对硝酸加压浸出的影响. 结果表明, 褐铁型红土镍矿具 有良好的微波吸收性能. 微波预处理后, 红土镍矿主要物相由针铁矿转变为赤铁矿, 且变得疏松多 孔; 再经300 °C焙烧30 min 后, 在200 °C, 酸矿比1.2: 1, 搅拌速度500 r/min 的条件下浸出60 min, Ni, Co, Fe, Mg的浸出率分别为95.2%, 98.1%, 1.8%, 15%. 相较于常规焙烧(82.1%)和不做预处理 (90.4%)的浸出, Ni 浸出有了明显的提高. 经过微波处理后矿物由于吸波性能存在差异, 被包裹的含镍 矿物被打开, 同时积累了很大内应力, 使褐铁型红土镍矿中的镍更容易被浸出. 因此, 在浸出前对褐 铁型红土镍矿进行微波预处理是一种有效提高选择性浸出的方式.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ÇETINTAŞ S, YILDIZ U, BINGÖL D. A novel reagent-assisted mechanochemical method for nickel recovery from lateritic ore [J]. Journal of Cleaner Production, 2018, 199: 616–632. DOI: https://doi.org/10.1016/j.jclepro.2018.07.212.

    Article  Google Scholar 

  2. MA Bao-zhong, WANG Chen-yan, YANG Bo, ZHANG Yong-lu. Selective pressure leaching of Fe(II) -rich limonitic laterite ores from Indonesia using nitric acid [J]. Minerals Engineering, 2013, 45: 151–158. DOI: https://doi.org/10.1016/j.mineng.2013.02.009.

    Article  Google Scholar 

  3. CHEN Sheng-li, GUO Xue-yi, SHI Wen-tang, LI Dong. Extraction of valuable metals from low-grade nickeliferous laterite ore by reduction roasting-ammonia leaching method [J]. Journal of Central South University, 2010, 17: 765–769. DOI: https://doi.org/10.1007/s11771-010-0554-9.

    Article  Google Scholar 

  4. LI Jin-hui, LI De-shun, XU Zhi-feng, LIAO Chun-fa, LIU Ye, ZHONG Bo. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution [J]. Journal of Cleaner Production, 2018, 179: 24–30. DOI: https://doi.org/10.1016/j.jclepro.2018.01.085.

    Article  Google Scholar 

  5. MA Bao-zhong, WANG Cheng-yan, CHEN Yong-qiang, Xing peng. Pilot-scale plant study on non-molten metalized. reduction-magnetic separation for magnesium-rich nickel oxide ores to produce ferronickel concentrate [J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 34–38. DOI: https://doi.org/10.13264/j.cnki.ysjskx.2018.01.006. (in Chinese)

    Google Scholar 

  6. MA Bao-zhong, LI Xiang, YANG Wei-jiao, HU Die, XING Peng, LIU Bao, WANG Cheng-yan. Nonmolten state metalized reduction of saprolitic laterite ores: Effective extraction and process optimization of nickel and iron [J]. Journal of Cleaner Production 2020, 256: 120415. DOI: https://doi.org/10.1016/j.jclepro.2020.120415.

    Article  Google Scholar 

  7. ZHENG Guo-lin, ZHU De-qing, PAN Jian, LI Qi-hou, AN Yue-ming, ZHU Jing-he, LIU Zhi-hong. Pilot scale test of producing nickel concentrate from low-grade saprolitic laterite by direct reduction-magnetic separation [J]. Journal of Central South University, 2014, 21(5): 1771–1777. DOI: https://doi.org/10.1007/s11771-014-2123-0.

    Article  Google Scholar 

  8. MA Bao-zhong, YANG Wei-jiao, YANG Bo, WANG Cheng-yan, CHEN Yong-qiang, ZHANG Yong-lu. Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores [J]. Hydrometallurgy, 2015, 155: 88–94. DOI: https://doi.org/10.1016/j.hydromet.2015.04.016.

    Article  Google Scholar 

  9. PICKLES C A. Microwave heating behaviour of nickeliferous limonitic laterite ores [J]. Minerals Engineering, 2004, 17(6): 775–784. DOI: https://doi.org/10.1016/j.mineng.2004.01.007.

    Article  Google Scholar 

  10. PICKLES C A. Drying kinetics of nickeliferous limonitic laterite ores [J]. Minerals Engineering, 2003, 16(12): 1327–1338. DOI: https://doi.org/10.1016/s0892-6875(03)00206-1.

    Article  Google Scholar 

  11. BASTURKCU H, ACARKAN N, GOCK E. The role of mechanical activation on atmospheric leaching of a lateritic nickel ore [J]. International Journal of Mineral Processing, 2017, 163: 1–8. DOI: https://doi.org/10.1016/j.minpro.2017.04.001.

    Article  Google Scholar 

  12. YIN Wan-zhong, LI Dong, LUO Xi-mei, YAO Jin, SUN Qian-yu. Effect and mechanism of siderite on reverse flotation of hematite [J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(4): 373–379. DOI: https://doi.org/10.1007/s12613-016-1246-8.

    Article  Google Scholar 

  13. MCDONALD R G, WHITTINGTON B I. Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies [J]. Hydrometallurgy, 2008, 91: 35–55. DOI: https://doi.org/10.1016/j.hydromet.2007.11.009.

    Article  Google Scholar 

  14. GUO Xue-yi, LI Dong, PARK Kyung-Ho, TIAN Qing-hua, WU Zhan. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process [J]. Hydrometallurgy, 2009, 99(3, 4): 144–150. DOI: https://doi.org/10.1016/j.hydromet.2009.07.012.

    Article  Google Scholar 

  15. LI Guang-hui, ZHOU Qun, ZHU Zhong-ping, LUO Jun, RAO Ming-jun, PENG Zhi-wei, JIANG Tao. Cobalt from limonitic laterite using phosphoric acid: An alternative for value-added processing of laterite [J]. Journal of Cleaner Production, 2018, 189: 620–626. DOI: https://doi.org/10.1016/j.jclepro.2018.04.083.

    Article  Google Scholar 

  16. LI Jin-hui, LI Xin-hai, HU Qi-yang, WANG Zhi-xing, ZHOU You-yuan, ZHENG Jun-chao, LIU Wang-rong, LI Ling-jun. Effect of pre-roasting on leaching of laterite [J]. Hydrometallurgy, 2009, 99(1, 2): 84–88. DOI: https://doi.org/10.1016/j.hydromet.2009.07.006.

    Article  Google Scholar 

  17. WU Fang-fang, CAO Zhan-fang, WANG Shuai, ZHONG Hong. Novel and green metallurgical technique of comprehensive utilization of refractory limonite ores [J]. Journal of Cleaner Production, 2018, 171: 831–843. DOI: https://doi.org/10.1016/j.jclepro.2017.09.198.

    Article  Google Scholar 

  18. OXLEY A, SMITH M E, CACERES O. Why heap leach nickel laterites? [J]. Minerals Engineering, 2016, 88: 53–60. DOI: https://doi.org/10.1016/j.mineng.2015.09.018.

    Article  Google Scholar 

  19. LOVEDAY B K. The use of oxygen in high pressure acid leaching of nickel laterites [J]. Minerals Engineering, 2008, 21: 533–538. DOI: https://doi.org/10.1016/j.mineng.2007.11.002.

    Article  Google Scholar 

  20. ZHANG Pei-yu, GUO Qiang, WEI Guang-ye, MENG Long, HAN Lin-xin, QU Jing-kui, QI Tao. Extraction of metals fromsaprolitic laterite ore through pressure hydrochloric-acid selective leaching [J]. Hydrometallurgy, 2015, 157: 149–158. DOI: https://doi.org/10.1016/j.hydromet.2015.08.007.

    Article  Google Scholar 

  21. DU PLESSIS C A, SLABBERT W, HALLBERG K B, JOHNSON D B. Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites [J]. Hydrometallurgy, 2011, 109: 221–229. DOI: https://doi.org/10.1016/j.hydromet.2011.07.005.

    Article  Google Scholar 

  22. LE L, TANG J, RYAN D, VALIX M. Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism [J]. Minerals Engineering, 2006, 19: 1259–1265. DOI: https://doi.org/10.1016/j.mineng.2006.02.006.

    Article  Google Scholar 

  23. YANG Wei-jiao, MA Bao-zhong, JIANG Xin, WANG Hua. Selective leaching of nickel and cobalt from limonitic laterite after activation pretreatment [J]. Nonferrous Metals (Extractive Metallurgy), 2018(1): 16–19. DOI: https://doi.org/10.3969/j.issn.1007-7545.2018.01.004. (in Chinese)

  24. GUO Qiang, QU Jing-kui, QI Tao, WEI Guang-ye, HAN Bing-bing. Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate [J]. Minerals Engineering, 2011, 24(8): 825–832. DOI: https://doi.org/10.1016/j.mineng.2011.03.001.

    Article  Google Scholar 

  25. FORSTER J, PICKLES C A, ELLIOTT R. Microwave carbothermic reduction roasting of a low grade nickeliferous silicate laterite ore [J]. Minerals Engineering, 2016, 88: 18–27. DOI: https://doi.org/10.1016/j.mineng.2015.09.005.

    Article  Google Scholar 

  26. WANG De-zhi, ZHANG Yu-qing, DUAN Bo-hua. Mo-Cu alloy obtained rapidly by microwave infiltration [J]. Nonferrous Metals Science and Engineering, 2018(3): 41–45. DOI: https://doi.org/10.13264/j.cnki.ysjskx.2018.03.003. (in Chinese)

  27. CHEN Guo, XIONG Kun, PENG Jin-hui, CHEN Jin. Optimization of combined mechanical activation-roasting parameters of titania slag using response surface methodology [J]. AdvPowder Technol, 2013, 21(3): 331–335. DOI: https://doi.org/10.1016/j.apt.2009.12.017.

    Google Scholar 

  28. HE Fei, CHEN Jin, CHEN Guo, PENG Jin-hui, SRINIVASAKANNAN C, RUAN R. Microwave dielectric properties and reduction behavior of low-grade pyrolusite [J]. JOM, 2019, 71(11): 3909–3914. DOI: https://doi.org/10.1007/s11837-019-03522-8.

    Article  Google Scholar 

  29. LI Kang-qiang, JIANG Qi, CHEN Guo, GAO Lei, PENG Jinhui, CHEN Quan, KOPPALA S, OMRAN M, CHEN Jin. Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends [J]. Bioresource Technology, 2021, 319: 124127. DOI: https://doi.org/10.1016/j.biortech.2020.124172.

    Article  Google Scholar 

  30. LI Kang-qiang, CHEN Jin, PENG Jin-hui, RUAN R, OMRAN M, CHEN Guo. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field [J]. Journal of Hazardous Materials, 2020, 381: 121227. DOI: https://doi.org/10.1016/j.jhazmat.2019.121227.

    Article  Google Scholar 

  31. ZHANG Chao-wu, ZHANG Li-na, ZHANG Nan, WANG Xia-yun, WANG Fang. Preparation and characterization of MgAl2O4 spinel as catalyst support [J]. Journal of Shaanxi University of Science & amp; Technology, 2016, 34(6): 42–46. DOI: https://doi.org/10.19481/j.cnki.issn1000-5811.2016.06.009. (in Chinese)

    Google Scholar 

  32. CHALKLEY M E, COLLINS M J, IGLESIAS C, TUFFREY N E. Effect of magnesium on pressure leaching of moa laterite ore [J]. Canadian Metallurgical Quarterly, 2010, 49(3): 227–234. DOI: https://doi.org/10.1179/cmq.2010.49.3.227.

    Article  Google Scholar 

  33. AGATZINI L S, DIMAKI D. Heap leaching of poor nickel laterites by sulphuric acid at ambient temperature [J]. Hydrometallurgy, 1994, 94: 193–208. DOI: https://doi.org/10.1007/978-94-011-1214-711.

    Article  Google Scholar 

  34. SHANG Xiao-biao, ZHAI Di, ZHANG Fu-cheng, WEI Cong, CHEN Jun-ruo, LIU Mei-hong, PENG Jin-hui. Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45 GHz microwave heating [J]. Ceramics International, 2019, 45: 23493–23500. DOI: https://doi.org/10.1016/j.ceramint.2019.08.055.

    Article  Google Scholar 

  35. XIONG Hou-dong, CHEN Yang, WANG Lei, TAN Qiu-lan, ZHANG Li-li, ZHONG Zhen-chen. Microwave absorbing performance of FeSiCr/GO nanocomposites [J]. Nonferrous Metals Science and Engineering, 2020, 3: 44–51. DOI: https://doi.org/10.13264/j.cnki.ysjskx.2020.03.006. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-yan Wang  (王成彦) or Yong-qiang Chen  (陈永强).

Additional information

Foundation item

Project(51974025) supported by the National Natural Science Foundation of China; Project(2018IA055) supported by the International Cooperation Project of Key Research and Development Plan of Yunan Province, China; Project (JKY2019-09) supported by State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, China

Contributors

The overarching research goals were developed by WANG Cheng-yan and CHEN Yongqiang. HE Fei performed the experiments, collected and analyzed the data. The research activity planning and execution were managed by MA Baozhong, ZHANG Wen-juan, MA Yu-tian and ZHAO Jian. The initial draft of the manuscript was written by HE Fei. WANG Cheng-yan. ASSELIN Edouard and MA Bao-zhong reviewed and edited the manuscript.

Conflict of interest

HE Fei, MA Bao-zhong, WANG Cheng-yan, MA Yu-tian, ASSELIN Edouard, CHEN Yong-qiang, ZHANG Wen-juan and ZHAO-Jian declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Ma, Bz., Wang, Cy. et al. Microwave pretreatment for enhanced selective nitric acid pressure leaching of limonitic laterite. J. Cent. South Univ. 28, 3050–3060 (2021). https://doi.org/10.1007/s11771-021-4838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4838-z

Key words

关键词

Navigation