Skip to main content
Log in

Production of titanium powder by metallothermic reduction of TiO2 in cold pressed pellets

TiO2 冷压块金属热还原法制备钛粉末

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to produce low-cost titanium (Ti) with high productivity, fundamental studies on producing metallic Ti from titanium dioxide (TiO2) in the cold pressed pellets were conducted by metallothermic reduction with an indirect contact method. This paper focuses on discussing the mechanism of the reduction process and the relationships of RM (a revised reduction index) with reduction temperature, reduction time, and mole ratio of TiO2 to CaCl2 (\({n_{{\rm{Ti}}{{\rm{O}}_2}}}/{n_{{\rm{CaC}}{{\rm{l}}_2}}}\)) in the pellets. The results show that metallic Ti was obtained from the reduction of TiO2 in the pellets by calcium (Ca) vapor; pellets were reduced homogenously and Ca vapor diffused into the porous pellets by Knudsen diffusion or the mixing diffusion of molecular diffusion and Knudsen diffusion at 1273 K; RM increased with the increases of temperature and reduction time and was 96.34% when TRedu=1273 K, tRedu=6 h, and \({n_{{\rm{Ti}}{{\rm{O}}_2}}}/{n_{{\rm{CaC}}{{\rm{l}}_2}}} = 4\); the reasonable nTiO2/nCaCl2 value is 3–5 for the pellets with enough strength and high RM.

摘要

为了高效生产低成本金属钛(Ti), 开展了基于非接触式二氧化钛(TiO2)冷压块金属热还原法制备Ti 粉末的基础研究。 本论文重点考察了非接触式金属热还原法的还原机理和还原指数(RM)与还原温度、 还原时间及TiO2/CaCl2 摩尔比(\({n_{{\rm{Ti}}{{\rm{O}}_2}}}/{n_{{\rm{CaC}}{{\rm{l}}_2}}}\))的关系。 研究结果显示, 钙(Ca)蒸气还原 TiO2 冷压块制备金属 Ti 粉末方法是可行的; 在1273 K 时, 冷压块可被均匀还原, Ca 蒸气在多孔冷压块内的扩散属于Knudsen 扩散或分子-Knudsen 混合扩散; RM 随着温度的升高和时间的延长而增加; 在还原温度 1273 K、 还原时间 6 h、\({n_{{\rm{Ti}}{{\rm{O}}_2}}}/{n_{{\rm{CaC}}{{\rm{l}}_2}}} = 4\) 的实验条件下, RM 为 96.34%; 为了满足冷压块强度和高 RM, 冷压块内 \({n_{{\rm{Ti}}{{\rm{O}}_2}}}/{n_{{\rm{CaC}}{{\rm{l}}_2}}}\) 控制在 3∼5 较为合理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIDE D R. CRC Handbook of chemistry and physics [M]. Boca, Raton: CRC Press, 2009.

    Google Scholar 

  2. KROLL W. The production of ductile titanium [J]. Transactions of the Electrochemical Society, 1940, 78: 35–47. DOI: https://doi.org/10.1149/1.3071290.

    Article  Google Scholar 

  3. MORIYA A, KANAI A. Titanium sponge production at sumitomo sitix corporation [J]. Shigen-to-Sozai (Journal of the Mining and Materials Processing Institute of Japan), 1993, 109(12): 1164–1169. DOI: https://doi.org/10.2473/shigentosozai.109.1164. (in Japanese)

    Article  Google Scholar 

  4. FUKUYAMA T, KOIZUMI M, HANAKI M, KOSEMURA S. Production of titanium sponge and ingot at Toho Titanium Co. Ltd. [J]. Shigen-to-Sozai (Journal of the Mining and Materials Processing Institute of Japan), 1993, 109(12): 1157–1163. DOI: https://doi.org/10.2473/shigentosozai.109.1157.

    Article  Google Scholar 

  5. ELLIOTT G R B. The continuous production of titanium powder using circulating molten salt [J]. JOM, 1998, 50(9): 48–49. DOI: https://doi.org/10.1007/s11837-998-0415-2.

    Article  Google Scholar 

  6. ARMSTRONG D R, BORYS S S, ANDERSON R P. Method of making metals and other elements from the halide vapor of the metal: US, 5958106 [P]. 1999-09-28.

  7. CHEN G Z, FRAY D J, FARTHING T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J]. Nature, 2000, 407: 361–364. DOI: https://doi.org/10.1002/chin.200102015.

    Article  Google Scholar 

  8. ONO K, OKABE H T, SUZUKI R O. Design, test and theoretical assessments for reduction of titanium oxide to produce titanium in molten salt [J]. Materials Trans (JIM), 2017, 58(3): 313–318. DOI: https://doi.org/10.2320/matertrans.MK201604.

    Article  Google Scholar 

  9. KUMSMOTO K, KISHIMOTO A, UDA T. Low-temperature electrodeposition of titanium in molten iodides [J]. Journal of Applied Electrochemistry, 2020, 50: 1209–1216. DOI: https://doi.org/10.1007/s10800-020-01470-9.

    Article  Google Scholar 

  10. TAKENAKA T, SUZUKI T, ISHIKAWA M, FUKASAWA E, KAWAKAMI M. New concept for electrowinning process of liquid titanium metal in molten salt [J]. Electrochemistry (The Electrochemical Society of Japan), 1999, 67: 661–668. DOI: https://doi.org/10.5796/electrochemistry.67.661.

    Google Scholar 

  11. ZHENG Hai-yan, ITO H, OKABE T H. Production of titanium powder by the calciothermic reduction of titanium concentrates or ore using the preform reduction process [J]. Materials Transactions (JIM), 2007, 48(8): 2244–2251. DOI: https://doi.org/10.2320/matertrans.MER2007115.

    Article  Google Scholar 

  12. JIAO Shu-qiang, ZHU Hong-min. Novel metallurgical process for titanium production [J]. Journal of Materials Research, 2006, 21(9): 2172–2175. DOI: https://doi.org/10.1557/jmr.2006.0268.

    Article  Google Scholar 

  13. WAN He-li, XU Bao-qiang, DAI Yong-nian, YANG Bin, LIU Da-chun, SEN Wei. Preparation of titanium powders by calciothermic reduction of titanium dioxide [J]. Jouranl of Central University, 2012, 19: 2434–2439. DOI: https://doi.org/10.1007/s11771-012-1293-x.

    Article  Google Scholar 

  14. OKABE T H, HAMANAKA Y, TANINOUCHI Y. Direct oxygen removal technique for recycling titanium using molten MgCl2 salt [J]. Faraday Discuss, 2016, 190: 109–126. DOI: https://doi.org/10.1039/C5FD00229J.

    Article  Google Scholar 

  15. LEYENS C, PETERS M. Titanium and titanium alloys [M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. DOI: https://doi.org/10.1002/3527602119.

    Book  Google Scholar 

  16. HABASHI F. Handbook of extractive metallurgy [M]. Vol II. Weinheim, Germany: VCH Verlagsgesellschaft GmbH, 1997.

    Google Scholar 

  17. BARIN I. Thermochemical data of pure substances [M]. 3rd Ed. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1995. DOI: https://doi.org/10.1002/9783527619825.

    Book  Google Scholar 

  18. MASSALSKI T B. Phase diagrams of binary titanium alloys [M]. Metal Park, Ohio, US: ASM International Society, 1987.

    Google Scholar 

  19. WENZ D A, JOHNSON I, WOLSON R D. CaCl2-rich region of the CaCl2-CaF2-CaO system [J]. Journal of Chemical & Engineering Data, 1969, 14(2): 250–252. DOI: https://doi.org/10.1021/je60041a027.

    Article  Google Scholar 

  20. ATKINS P, de PAULA J. Aktins’s physical chemistry [M]. 7th Ed. Oxford, Britain: Oxford University Press, 2002.

    Google Scholar 

  21. SHARMA R A. Solubilities of calcium in liquid calcium chloride in equilibrium with calcium-copper alloys [J]. The Journal of Physical Chemistry, 1970, 74(22): 3896–3900. DOI: https://doi.org/10.1021/j100716a009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Toru H Okabe at Institute of Industrial Science, the University of Tokyo, Japan for his support, and my group members and colleagues at School of Metallurgy, Northeastern University, China for their support.

Author information

Authors and Affiliations

Authors

Contributions

The research goals were developed by ZHENG Hai-yan. ZHENG Hai-yan provided the concept, conducted the investigation, and wrote the draft of manuscript. GUO Yong-chun conducted the data curation and investigation. SHEN Feng-man provided a funding acquisition and project administration. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Hai-yan Zheng  (郑海燕).

Additional information

Conflict of interest

ZHENG Hai-yan, GUO Yong-chun and SHEN Feng-man declare that they have no conflict of interest.

Foundation item

Projects(51774071, 50804007, 51974073) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Hy., Guo, Yc. & Shen, Fm. Production of titanium powder by metallothermic reduction of TiO2 in cold pressed pellets. J. Cent. South Univ. 28, 48–57 (2021). https://doi.org/10.1007/s11771-021-4585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4585-1

Key words

关键词

Navigation