Skip to main content
Log in

Robust force tracking control via backstepping sliding mode control and virtual damping control for hydraulic quadruped robots

基于反步滑模和虚拟阻尼的液压四足机器人鲁棒力跟踪控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments, an impedance-based adaptive reference trajectory generation scheme is used. Secondly, in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors, the backstepping sliding mode controller is combined with the adaptive reference trajectory generator. Finally, a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change. The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged; the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed; when the environment suddenly changes, the drive unit can move slowly until the robot re-contacts the environment.

摘要

为了提高在不确定和非结构化环境下液压四足机器人的力跟踪性能, 采用了基于阻抗的自适应 参考轨迹生成方案。然后, 了提高对环境变化的鲁棒性并减少由轨迹跟踪误差引起的接触力误差, 将反步滑模控制器与自适应参考轨迹生成器结合使用。最后, 提出了一种基于速度和压力反馈的虚拟 阻尼控制, 以解决环境突然变化引起的接触力消失和失速的问题。仿真结果表明, 该方案在环境不变 的情况下具有较高的接触力跟踪精度。当环境发生合理变化时, 接触力误差始终可以保证在可接受的 范围内; 当环境突然改变时, 驱动单元可以缓慢移动, 直到机器人足端重新接触环境。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KONG Xiang-dong, BA Kai-xian, YU Bin, CAO Yuan, ZHU Qi-xin, ZHAO Hua-long. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system [J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 454–464. DOI: https://doi.org/10.3901/CJME.2016.0311.030.

    Article  Google Scholar 

  2. SHEN Wei, HUANG Hong-lei, PANG Yu, SU Xiao-yu. Review of the energy saving hydraulic system based on common pressure rail [J]. IEEE Access, 2017, 5: 655–669. DOI: https://doi.org/10.1109/ACCESS.2017.2648642.

    Article  Google Scholar 

  3. SHEN Wei, WANG Jie-hao. An integral terminal sliding mode control scheme for speed control system using a double-variable hydraulic transformer [J]. ISA Transactions, 2019. DOI: https://doi.org/10.1016/j.isatra.2019.08.068.

  4. BOAVENTURA T, BUCHLI J, SEMINI C, CALDWELL D G. Model-based hydraulic impedance control for dynamic robots [J]. IEEE Transactions on Robotics, 2015, 31(6): 1–13. DOI: https://doi.org/10.3929/ethz-a-010604012.

    Article  Google Scholar 

  5. MENDES N, NETO P, PIRES J N, LOUREIRO A. An optimal fuzzy-PI force/motion controller to increase industrial robot autonomy [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1–4): 435–441. DOI: https://doi.org/10.1007/s00170-013-4741-3.

    Article  Google Scholar 

  6. DUAN Jin-jun, GAN Ya-hui, CHEN Ming, DAI Xian-zhong. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment [J]. Robotics and Autonomous Systems, 2018, 102: 54–65. DOI: https://doi.org/10.1016/j.robot.2018.01.009.

    Article  Google Scholar 

  7. SU Xiao-yu. Master-slave control for active suspension systems with hydraulic actuator dynamics [J]. IEEE Access, 2017, 5: 3612–3621. DOI: https://doi.org/10.1109/ACCESS.2017.2672598.

    Article  Google Scholar 

  8. HOGAN N. Impedance control-An approach to manipulation [J]. ASME Transactions Journal of Dynamic Systems & Measurement Control B, 1985, 107(1): 304–313.

    Google Scholar 

  9. MAPLES J A, BECKER J J. Experiments in force control of robotic manipulators [C]// Proceedings of 1986 IEEE International Conference on Robotics and Automation. 1986: 695–702. DOI: https://doi.org/10.1109/ROBOT.1986.1087590.

  10. AREVALO J C, GARCIA E. Impedance control for legged robots: An insight into the concepts involved [J]. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 1400–1411. DOI: https://doi.org/10.1109/TSMCC.2012.2187190.

    Article  Google Scholar 

  11. CHEN Ying-hui, ZHAO Jiang-bo, WANG Jun-zheng, LI Duo-yang. Fractional-order impedance control for a wheel-legged robot [C]// Chinese Control and Decision Conference. 2017: 7845–7850. DOI: https://doi.org/10.1109/CCDC.2017.7978618.

  12. KIM S, KIM J P, RYU J. Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4): 1195–1205. DOI: https://doi.org/10.1109/TMECH.2013.2276935.

    Article  Google Scholar 

  13. ROVEDA L, IANNACCI N, VICENTINI F, PEDROCCHI N, BRAGHIN F, TOSATTI L M. Optimal impedance force-tracking control design with impact formulation for interaction tasks [J]. IEEE Robotics & Automation Letters, 2016, 1(1): 130–136. DOI: https://doi.org/10.1109/LRA.2015.2508061.

    Article  Google Scholar 

  14. YANG Run-xian, YANG Cheng-guang, CHEN Mou, NA Jing. Adaptive impedance control of robot manipulators based on Q-learning and disturbance observer [J]. Systems Science & Control Engineering, 2017, 5(1): 287–300. DOI: https://doi.org/10.1080/21642583.2017.1347532.

    Article  Google Scholar 

  15. SHENG Xian-jun, ZHANG Xi. Fuzzy adaptive hybrid impedance control for mirror milling system [J]. Mechatronics, 2018, 53: 20–27. DOI: https://doi.org/10.1016/j.mechatronics.2018.05.008.

    Article  Google Scholar 

  16. LIANG Xiu-quan, ZHAO Huan, LI Xiang-fei, DING Han. Force tracking impedance control with unknown environment via an iterative learning algorithm [J]. Science China, 2018, 62(5): 47–49. DOI: https://doi.org/10.1109/icarm.2018.8610769.

    Article  Google Scholar 

  17. LIU Hou-de, LU Wei-feng, ZHU Xiao-jun, WANG Xue-qian, LIANG Bin. Force tracking impedance control with moving target [C]// 2017 IEEE International Conference on Robotics and Biomimetics. 2017: 1369–1374. DOI: https://doi.org/10.1109/robio.2017.8324608.

  18. HE Wei, DONG Yi-ting. Adaptive fuzzy neural network control for a constrained robot using impedance learning [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1174–1186. DOI: https://doi.org/10.1109/TNNLS.2017.2665581.

    Article  Google Scholar 

  19. PENG Jin-zhu, YANG Ze-qi, MA Tian-lei. Position/force tracking impedance control for robotic systems with uncertainties based on adaptive jacobian and neural network [J]. Complexity, 2019, 2019: 1406534. DOI: https://doi.org/10.1155/2019/1406534.

    MATH  Google Scholar 

  20. KIM T, YOO S K, KIM H S, KI M J. Design and force-tracking impedance control of a 2-DOF wall-cleaning manipulator using disturbance observer and sliding mode control [C]// 2018 IEEE International Conference on Robotics and Automation. 2018: 4079–4084. DOI: https://doi.org/10.1109/icra.2018.8460897.

  21. ZHANG Xiao-dong, KHAMESEE M B. Adaptive force tracking control of a magnetically navigated microrobot in uncertain environments [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1644–1651. DOI: https://doi.org/10.1109/TMECH.2017.2705523.

    Article  Google Scholar 

  22. SU Xiao-yu, GAO Yan-nan, ZHAO Rui-han. Roll attitude controller design for ships at zero speed [J]. International Journal of Fuzzy Systems, 2018, 20(2): 611–620. DOI: https://doi.org/10.1007/s40815-017-0402-2.

    Article  MathSciNet  Google Scholar 

  23. LIN Bin, SU Xiao-yu, LI Xiao-hang. Fuzzy sliding mode control for active suspension system with proportional differential sliding mode observer [J]. Asian Journal of Control, 2019, 21(1): 264–276. DOI: https://doi.org/10.1002/asjc.1882.

    Article  MathSciNet  Google Scholar 

  24. SHEN Wei, SU Xiao-yu, PANG Yu, ZHAO Rui-han. Robust controller design for the excavator swing system under the active regulating common pressure rail [J]. Transactions of the Institute of Measurement and Control, 2018, 40(11): 3323–3332. DOI: https://doi.org/10.1177/0142331217707369.

    Article  Google Scholar 

  25. BA Kai-xian, YU Bin, MA Guo-liang, ZHU Qi-xin, GAO Zheng-jie, KONG Xiang-dong. A novel position-based impedance control method for bionic legged robots’ HDU [J]. IEEE Access, 2018, 6: 55680–55692. DOI: https://doi.org/10.1109/access.2018.2871244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shen  (沈伟).

Additional information

Foundation item

Projects(51975376, 51505289) supported by the National Natural Science Foundation of China; Project(19ZR1435400) supported by the Natural Science Foundation of Shanghai, China

Contributors

SHEN Wei provided the concept and edited the draft of manuscript, LÜ Xiao-bin conducted the literature review and wrote the first draft of the manuscript and MA Chen-jun edited the draft of manuscript.

Conflict of interest

SHEN Wei, L Xiao-bin, and MA Chen-jun declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Lü, Xb. & Ma, Cj. Robust force tracking control via backstepping sliding mode control and virtual damping control for hydraulic quadruped robots. J. Cent. South Univ. 27, 2673–2686 (2020). https://doi.org/10.1007/s11771-020-4490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4490-z

Key words

关键词

Navigation