Skip to main content
Log in

Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture

基于层次式动态任务调度架构下的多无人机巡逻实现

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.

摘要

本文考虑了一个多无人机巡逻的场景。在该场景中, 一组无人机同步对一片地面区域进行覆盖 巡逻。采用领航者-跟随者控制模式, 并提出了一种改进的李雅普诺夫向量场方法以提高轨迹跟踪的 精度。为了适应通信条件差的情况, 提出了一种基于预测的同步方法来保持编队的一致性。此外, 为 了使多无人机系统能够适应动态和不确定环境, 提出了一种层次式动态任务调度架构。在该架构中, 首先对所有执行任务的算法按其功能进行分类, 然后基于插件技术对算法进行模块化。通过结合行为 模型和插件技术, 设计了三层控制流, 以有效实现任务的动态调度。为了验证所提出架构的有效性, 考虑了一个多无人机交通监视场景, 并设计实验从三层控制流方面展示动态任务调度的效果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YUAN Yan, YASAMIN M. To go or not to go: on energy-aware and communication-aware robotic operation [J]. IEEE Transactions on Control of Network Systems, 2014, 1(3): 218–231. DOI: https://doi.org/10.1109/TCNS.2014.2337971.

    Article  MathSciNet  Google Scholar 

  2. KYLE C, RYAN S, SOO-HYUN Y, ZHANG Ya-wei, GEOFFREY H. Multi-UAV exploration with limited communication and battery [C]// IEEE International Conference on Robotics and Automation. IEEE, 2015: 2230–2235. DOI: https://doi.org/10.1109/ICRA.2015.7139494.

  3. HUANG Wan-rong, WANG Yan-zhen, YI Xiao-dong, YANG Xue-jun. Distributed coordination with connectivity maintenance for nonholonomic robots [J]. Computer Animation and Virtual Worlds, 2018, 29(3, 4): e1833. DOI: https://doi.org/10.1002/cav.1833.

    Article  Google Scholar 

  4. CAI Zhong-xuan, CHANG Xue-feng, WANG Yan-zhen, YI Xiao-dong, YANG Xue-jun. Distributed control for flocking and group maneuvering of nonholonomic agents [J]. Computer Animation and Virtual Worlds, 2017, 28(3, 4): e1777. DOI: https://doi.org/10.1002/cav.1777.

    Article  Google Scholar 

  5. YANG Guang-zhong, JIM B, PIERRE E, PEER F, LUCIANO F, ROBERT F, NEIL J, VIJAY K, MARCIA M, ROBERT M, BRADLEY J, BRIAN S, MARIAROSARIA T, RUSSELL T, MANUELA V, WANG Zhong-lin, ROBERT W. The grand challenges of science robotics [J]. Science Robotics, 2018, 3(14): eaar7650. DOI: https://doi.org/10.1126/scirobotics.aar7650.

    Article  Google Scholar 

  6. MAGNUS L, KARL H. Using robot mobility to exploit multipath fading [J]. IEEE Wireless Communications, 2009, 16(1): 30–37. DOI: https://doi.org/10.1109/MWC.2009.4804366.

    Article  Google Scholar 

  7. WU Yun-long, ZHANG Bo, YANG Shao-shi, YI Xiao-dong, YANG Xue-jun. Energy-efficient joint communication-motion planning for relay-assisted wireless robot surveillance [C]// IEEE Conference on Computer Communications. IEEE, 2017. DOI: https://doi.org/10.1109/INFOCOM.2017.8057072.

  8. MAJA V, MEYSAM B, GREGOIRE H, DARIO F. Distributed formation control of fixed wing micro aerial vehicles for area coverage [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2015. DOI: https://doi.org/10.1109/IROS.2015.7353444.

  9. MEHRZAD M, YASAMIN M. On the spatial predictability of communication channels [J]. IEEE Transactions on Wireless Communications, 2012, 11(3): 964–978. DOI: https://doi.org/10.1109/TWC.2012.012712.101835.

    Article  Google Scholar 

  10. YIANNIS K, MICHAEL M. Distributed intermittent communication control of mobile robot networks under time-critical dynamic tasks [C]// IEEE International Conference on Robotics and Automation. IEEE, 2018. DOI: https://doi.org/10.1109/ICRA.2018.8460570.

  11. BRIANA L, SHAMEKA D, JULIAN D, MONICA A. Using rendezvous to overcome communication limitations in multirobot exploration [C]// IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2011. DOI: https://doi.org/10.1109/ICSMC.2011.6084037.

  12. ISAAC V, RODERICH G, ANDREAS K. Re-establishing communication in teams of mobile robots [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2018. DOI: https://doi.org/10.1109/IROS.2018.8594460.

  13. GRADTY W, BRIAN G, PAUL D, JAMES M R, EVANGELOS A T. Best response model predictive control for agile interactions between autonomous ground vehicles [C]// IEEE International Conference on Robotics and Automation. IEEE, 2018. DOI: https://doi.org/10.1109/ICRA.2018.8462831.

  14. BRUNO S, OUSSAMA K. Springer handbook of robotics [M]. Springer, 2016. DOI: https://doi.org/10.1007/978-3-540-30301-5.

  15. JUAN R, LUO Shuang-qi, ZHU Ding-qiao, DU Yun-long, LIN Hong-bin, HUANG Zheng-jie, KUANG Wen-wei, KENSUKE H. Online robot introspection via wrench-based action grammars [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2017: 5429–5436. DOI: https://doi.org/10.1109/IROS.2017.8206438.

  16. YANG Xue-jun, DAI Hua-dong, YI Xiao-dong, WANG Yan-zhen, YANG Shao-wu, ZHANG Bo, WANG Zhi-yuan, ZHOU Yun, PENG Xue-feng. micros: A morphable, intelligent and collective robot operating system [J]. Robotics and Biomimetics, 2016, 3(1): 21. DOI: https://doi.org/10.1186/s40638-016-0054-y.

    Article  Google Scholar 

  17. ANIS K, HACHEMI B, IMEN C, SAHAR T, ADEL A, MOHAMED S, MARAM M, OMAR C, YASIR J. Integration of global path planners in ROS [J]. Robot Path Planning and Cooperation, 2018: 83–102. DOI: https://doi.org/10.1007/978-3-319-77042-0_4.

  18. KENTA T, TOSHINNORI A, VALERI K, FLORENTIN S. Simulation environment for mobile robots testing using ros and gazebo [C]// 20th International Conference on System Theory, Control and Computing. 2016: 96–101. DOI: https://doi.org/10.1109/ICSTCC.2016.7790647.

  19. ROSEN D, JAMES K. OpenRAVE: A planning architecture for autonomous robotics [R]. Rep. CMU-RI-TR-08-34, 2008.

  20. FILIPPO S, KRISTIN Y P. OpenMRH: A modular robotic hand generator plugin for OpenRAVE [C]// IEEE International Conference on Robotics and Biomimetics. IEEE, 2015: 1–6. DOI: https://doi.org/10.1109/ROBIO.2015.7407010.

  21. KERSTIN D, CHRYSTOPHER L N. Imitation in animals and artifacts [M]. MIT Press, 2002. DOI: https://doi.org/10.1108/k.2003.06732gae.004.

  22. RODNEY A B. A robust layered control system for a mobile robot [J]. IEEE Journal on Robotics and Automation, 1986, 2(1): 14–23. DOI: https://doi.org/10.1109/JRA.1986.1087032.

    Article  Google Scholar 

  23. MICHELE C, PETTER O. How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees [J]. IEEE Transactions on Robotics, 2016, 33(2): 372–389. DOI: https://doi.org/10.1109/TRO.2016.2633567.

    Google Scholar 

  24. MORGAN Q, KEN C, BRIAN G, JOSH F, TULLY F, JEREMY L, ROB W, ANDREW N. ROS: An open-source robot operating system [C]// ICRA Workshop on Open Source Software, 2009.

  25. WANG Y C, TSENG Y C. Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage [J]. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(9): 1280–1294. DOI: https://doi.org/10.1109/TPDS.2007.70808.

    Article  Google Scholar 

  26. ERIC W F, DALE A L, CORY D, JACK E, WILLIAM J P. Lyapunov guidance vector fields for unmanned aircraft applications [C]// American Control Conference. IEEE, 2007. DOI: https://doi.org/10.1109/ACC.2007.4282974.

  27. LIU Qing-wen, ZHOU Sheng-li, GEORGIOS B. Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links [J]. IEEE Transactions on Wireless Communications, 2004, 3(5): 1746–1755. DOI: https://doi.org/10.1109/TWC.2004.833474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-long Wu  (武云龙) or Xiao-guang Ren  (任小广).

Additional information

Foundation item

Project(2017YFB1301104) supported by the National Key Research and Development Program of China; Projects(61906212, 61802426) supported by the National Natural Science Foundation of China

Contributors

The overarching research goals were developed by WU Wen-di, WU Yun-long, REN Xiao-guang and TANG Yu-hua. WU Wen-di and WU Yun-long conducted the literature review and wrote the first draft of the manuscript. LI Jing-hua analyzed the calculated results. SHI Dian-xi edited the draft of manuscript.

Conflict of interest

WU Wen-di, WU Yun-long, LI Jing-hua, REN Xiao-guang, SHI Dian-xi, and TANG Yu-hua declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Wd., Wu, Yl., Li, Jh. et al. Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture. J. Cent. South Univ. 27, 2614–2627 (2020). https://doi.org/10.1007/s11771-020-4486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4486-8

Key words

关键词

Navigation