Skip to main content
Log in

Comparison of bioleaching of chalcopyrite concentrates with mixed culture after cryopreservation with PEG-2000 in liquid nitrogen

PEG-2000 液氮保藏混合浸矿菌对黄铜矿生物浸出的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A mixed culture of bioleaching microorganisms was enriched. Then the mixed culture was preserved by liquid nitrogen cryopreservation for 6 months and 12 months, respectively, using PEG-2000 as the protective agent. The chalcopyrite leaching ability, activity and diversity of the mixed culture before and after preservation were compared. The results showed that the copper extraction rate was 95.7% in chalcopyrite bioleaching within 20 d by the original culture. After cryopreservation for 6 months and 12 months, the copper extraction rate of the mixed culture was 94.9% within 25 d and 93.6% within 35 d, respectively. The cell viability achieved 87% and 41% after being preserved for 6 months and 12 months, respectively. Furthermore, the ecology analysis identified Acidithiobacillus ferrooxidans, Acidithiobacillus caldus, Sulfobacillus thermotolerans and Pseudomonas aeruginosa in the original mixed culture. After cryopreservation for 12 months, the composition of community changed, but the predominant microorganisms still existed.

摘要

首先, 富集到具有浸矿能力的混合培养物, 然后, 以 PEG-2000 作为保护剂, 对混合培养物液氮冷冻保藏 6 个月和 12 个月, 对其保藏前、 后黄铜矿的浸出能力、 活性和多样性进行比较. 结果表明, 当用原始培养物浸出黄铜矿时, 20 天内铜的浸出率为 95.7%. 冷冻保藏 6 个月后, 混合培养物的铜浸出率在 25 天内为 94.9%, 保藏 12 个月后, 在 35 天内为 93.6%. 保藏 6 个月和 12 个月后, 混合菌种的活性分别达到 87%和 41%. 此外, 对原始培养物进行生态学分析, 鉴定得到 Acidithiobacillus ferrooxidans, Acidithiobacillus caldus, Sulfobacillus thermotoleransPseudomonas aeruginosa. 冷冻保藏 12 个月后, 混合培养物的群落组成发生了变化, 但优势菌群依然存在.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PENG Tang-jian, SHI Li-juan, YU Run-lan, GU Guo-hua, ZHOU Dan, CHEN Miao, QIU Guan-zhou, ZENG Wei-min. Effects of processing pH stimulation on cooperative bioleaching of chalcopyrite concentrate by free and attached cells [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(26): 8–2220. DOI: 10.1016/S1003-6326(16)64338-8.

    Google Scholar 

  2. AI Chen-bing, YAN Zhang, CHAI Hong-sheng, GU Tian-yuan, WANG Jun-jun, CHAI Li-yuan, QIU Guan-zhou, ZENG Wei-min. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation [J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(46): 8–1113. DOI: 10.1007/s10295-019-02193-3.

    Google Scholar 

  3. D’HUGUES P, FOUCHER S, GALLE-CAVALLONI P, MORIN D. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture [J]. International Journal of Mineral Processing, 2002, 66(1–4): 107–119. DOI: 10.1016/S0301-7516(02)00004-2.

    Article  Google Scholar 

  4. QIU Mu-qing, XIONG Shui-ying, ZHANG Wei-min. Efficacy of chalcopyrite bioleaching using a pure and a mixed bacterium [J]. International Journal of Minerals Metallurgy & Materials, 2006, 13(13): 1–7. DOI: CNKI: SUNBJKY.0.2006-01-002.

    Google Scholar 

  5. LI Shou-peng, GUO Ning, WU Hai-yan, QIU Guan-zhou, LIU Xin-xing. High efficient mixed culture screening and selected microbial community shift for bioleaching process [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(21): 6–1383. DOI: 10.1016/s1003-6326(11)60870-4.

    Google Scholar 

  6. CHEN Yu-zhen, SHAO Kun, GUAN Bing, HOU Pei-bin, ZHANG Hua-ning, BI Zhen-wang. An analysis on the serotypes and antibiotic sensitivities of foodborne Salmonella in Shandong province from 2003 to 2010 [J]. Chinese Journal of Food Hygiene, 2012, 24(24): 1–9. (in Chinese)

    Google Scholar 

  7. RAMANATHAN T, TING Y P. Selective copper bioleaching by pure and mixed cultures of alkaliphilic bacteria isolated from a fly ash landfill site [J]. Water Air & Soil Pollution, 2015, 226(11): 374. DOI: 10.1007/s11270-015-2641-x.

    Article  Google Scholar 

  8. NIE Yi-lei, CHEN Hong, LUO Li-jin, JIA Wei, CHEN Xing-wei. Screening and identification of mixed culture,and its bioleaching capacity [J]. Biotechnology Bulletin, 2016, 32(32): 8–177. (in Chinese)

    Google Scholar 

  9. DUAN Hong. Preservation and genetic diversity of three Acidithiobacillus caldus strains [D]. Changsha: Central South University, 2013. (in Chinese)

    Google Scholar 

  10. ZHAO Guo, ZHANG Guan. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying [J]. Journal of Applied Microbiology, 2010, 99(99): 2–333. DOI: 10.1111/J.1365-2672.2005.02587.X.

    Google Scholar 

  11. KONEV I E, ZHILINA Z A, CHAMIN N N. Some characteristics of using polyalcohols as cryoprotectors in preserving Actinomyces noursei LIA-0471 [J]. Antibiotiki, 1975, 20(20): 4–342. http://libdb.csu.edu.cn/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/f ull_record.do?product=UA&search_mode=GeneralSearch& qid=5&SID=6FRVRcZixS7i7QlmOIx&page=l&doc=l.

    Google Scholar 

  12. HUBALEK Z. Protectants used in the cryopreservation of microorganisms [J]. Cryobiology, 2003, 46(46): 3–205. DOI: 10.1016/s0011-2240(03)00046-4.

    Google Scholar 

  13. KUWANO K, ARUGA Y, SAGA N. Cryopreservation of clonal gametophytic thalli of Porphyra (Rhodophyta) [J]. Plant Science, 1996, 116(116): 1–117. DOI: 10.1016/0168-9452(96)04380-4.

    Google Scholar 

  14. LIU Li-li. Liquid nitrogen preservation and comparative study of molecular polymorphisms of Acidithiobacillus ferrooxidans strains [D]. Changsha: Central South University, 2014. (in Chinese)

    Google Scholar 

  15. WU Xue-ling, HU Qi, HOU Dong-mei, XIN Xiao-hong, MIAO Bo, WANG Yang-yang, LIU Xue-duan, SHEN Li. Preservation efficiency of new cryoprotectant used for Acidithiobacillus ferrooxidans in liquid nitrogen [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(23): 3–818. DOI: 10.1016/S1003-6326(13)62534-0.

    Google Scholar 

  16. WU Xue-ling, XIN Xiao-hong, JIANG Ying, LIANG Ren-xing, YUAN Peng, FANG Chen-xiang. Liquid-nitrogen cryopreservation of three kinds of autotrophic bioleaching bacteria [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(18): 6–1386. DOI: 10.1016/s1003-6326 (09)60013-3.

    Google Scholar 

  17. ZENG Wei-min, ZHOU Hong-bo, WAN Min-xi, CHAO Wei-liang, XU Ai-ling, LIU Xue-duan, QIU Guan-zhou. Preservation of Acidithiobacillus caldus: A moderately thermophilic bacterium and the effect on subsequent bioleaching of chalcopyrite [J]. Hydrometallurgy, 2009, 96(96): 4–333. DOI: 10.1016/j.hydromet.2008.11.003.

    Google Scholar 

  18. FU Ben-zhong, CHEN Qian-qian, WEI Mi, ZHU Jie-qian, YANG Xin-he, LI Guo-yuan, ZOU Li-ping, WANG Dian-bei. Investigation of walnut bacterial blight pathogens based on 16S-rDNA sequences and RFLP. [J]. Journal of Agricultural University of Hebei, 2016, 39(39): 5–64. DOI: 10.13320/j.cnki.jauh2016.0109. (in Chinese)

    Google Scholar 

  19. POSTGATE J R, HUNTER J R. On the survival of frozen bacteria [J]. Journal of General Microbiology, 1961, 26(26): 3–367. DOI: 10.1099/00221287-26-3-367.

    Google Scholar 

  20. ASHWOOD-SMITH M J, WARBY C. Studies on the molecular weight and cryoprotective properties of polyvinylpyrrolidone and dextran with bacteria and erythrocytes [J]. Cryobiology, 1971, 8(8): 5–453. DOI: 10.1016/0011-2240(71)90036-8.

    Google Scholar 

  21. RAWLINGS D E, JOHNSON D B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia [J]. Microbiology, 2007, 153(153): 2–315. DOI: 10.1099/mic.0.2006/001206-0.

    Google Scholar 

  22. XIAO Yun-hua, LIU Xue-duan, DONG Wei-ling, LIANG Yi-li, NIU Jiao-jiao, GU Ya-bing, MA Li-yuan, HAO Xiao-dong, ZHANG Xian, XU Zhen, YIN Hua-qun. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process [J]. Archives of Microbiology, 2017, 199(199): 5–1. DOI: 10.1007/s00203-017-1342-9.

    Google Scholar 

  23. MA Li-yuan, WANG Xing-jie, FENG Xue, LIANG Yi-li, XIAO Yun-hua, HAO Xiao-dong, YIN Hua-qun, LIU Hong-wei, LIU Xue-duan. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession [J]. Bioresource Technology, 2017, 223: 121–130. DOI: 10.1016/j.biortech.2016.10.056.

    Article  Google Scholar 

  24. BATTAGLIA-BRUNET F, CLARENS M, D’HUGUES P, GODON J, FOUCHER S, MORIN D. Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques [J]. Applied Microbiology & Biotechnology, 2002, 60(1, 2): 206–211. DOI: 10.1007/s00253-002-1095-4.

    Google Scholar 

  25. DEMERGASSO C S, GALLEGUILLOS P, ESCUDERO G, ZEPEDA A, DANNY C, CASAMAYOR E O. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap [J]. Hydrometallurgy, 2005, 80(80): 4–241. DOI: 10.1016/j.hydromet.2005.07.013.

    Google Scholar 

  26. DEW D W, BUUREN C V, MCEWAN K, BOWKER C. Bioleaching of base metal sulphide concentrates: A comparison of high and low temperature bioleaching [J]. Journal-South African Institute of Mining and Metallurgy, 2000, 100(100): 7–409. http://libdb.csu.edu.cn/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/f ull_record.do?product=UA&search_mode=GeneralSearch&qid= 1&SID=6FRVRcZixS7i7Q1mOIx&page= l&doc=2.

    Google Scholar 

  27. ZHOU Zhi-jun, YIN Hua-qun, LIU Yi, XIE Ming, QIU Guan-zhou, LIU Xue-duan. Diversity of microbial community at acid mine drainages from Dachang metals-rich mine, China [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(20): 6–1097. DOI: 10.1016/s1003-6326(09)60263-6.

    Google Scholar 

  28. TUPIKINA O V, MINNAAR S H, HILLE R P V, WYK N V, RAUTENBACH G F, DEW D, HARRISON STL. Determining the effect of acid stress on the persistence and growth of thermophilic microbial species after mesophilic colonisation of low grade ore in a heap leach environment [J]. Minerals Engineering, 2013, 53(53): 11–152. DOI: 10.1016/j.mineng.2013.07.015.

    Google Scholar 

  29. AI Chen-bing, YAN Zhang, ZHOU Han, HOU Shan-shan, CHAI Li-yuan, QIU Guan-zhou, ZENG Wei-min. Metagenomic insights into the effects of seasonal temperature variation on functional potentials of activated sludge [J]. Microorganisms, 2019, 7: 713. DOI: 10.3390/ microorganisms7120713.

    Article  Google Scholar 

  30. GAO Qi-yu, TANG De-ping, SONG Peng, ZHOU Jian-ping, LI Hong-yu. Characterization of acylated homoserine lactone derivatives and their influence on biofilms of Acidithiobacillus ferrooxidans BY-3 under arsenic stress [J]. Journal of Central South University, 2020, 27(27): 1–52. DOI: 10.1007/s1l771-020-4277-2.

    Google Scholar 

  31. PENG Tang-jian, ZHOU Dan, LIU Ya-nan, YU Run-Ian, QIU Guan-zhou, ZENG Wei-min. Effects of pH value on the expression of key iron/sulfur oxidation genes during bioleaching of chalcopyrite on thermophilic condition [J]. Ann Microbiol, 2019, 69(69): 6–627. DOI: 10.1007/s13213-019-01453-y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-min Zeng  (曾伟民).

Additional information

Foundation item: Projects(31470230, 51320105006, 51604308) supported by the National Natural Science Foundation of China; Project(2017RS3003) supported by the Youth Talent Foundation of Hunan Province of China; Project(2018JJ2486) supported by the Natural Science Foundation of Hunan Province of China; Project(2018WK2012) supported by the Key Research and Development Projects in Hunan Province, China; Project(2018zzts767) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xl., Wu, Xy., Deng, Ff. et al. Comparison of bioleaching of chalcopyrite concentrates with mixed culture after cryopreservation with PEG-2000 in liquid nitrogen. J. Cent. South Univ. 27, 1386–1394 (2020). https://doi.org/10.1007/s11771-020-4374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4374-2

Keywords

关键词

Navigation