Skip to main content

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 32))

Abstract

Biohydrometallurgy is a modern, steadily developing alternative metal production technology based on the use of microorganisms and their metabolic products, such as ferric iron, sulfuric acid, etc. for the extraction of metals from ores. Microbiological processing of ores and concentrates has economic, technical and, most importantly, environmental advantages over traditional technologies. Heap leaching is successfully used for recovery of copper from a secondary mineral—chalcocite (Cu2S). However, the main world reserves of copper are found in the form of chalcopyrite (CuFeS2). Chalcopyrite is the most refractory mineral and undergoes chemical or biological oxidation at a very low rate. One of the most common ways to enhance copper extraction from chalcopyrite is the use of thermophiles. Besides, the intensity of biooxidation of sulfide minerals depends on the pH, redox potential, Fe2+/Fe3+ ratio, metals ion concentration and the microorganisms used. It was revealed that the mixed cultures and consortia of moderate thermophilic microorganisms were more efficient and stable in the oxidation of chalcopyrite than pure cultures. From this point of view, developing and optimizing microbial associations for use in commercial copper leaching systems remain an important challenge. In this paper bioleaching of chalcopyrite by pure and mixed cultures of moderate thermophilic bacteria S. thermosulfidooxidans and thermotolerant sulfur or iron oxidizing bacteria L. ferriphilum CC, as well as the influence of physicochemical factors on this process have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña J, Rojas J, Amaro A, Toledo H, Jerez C (1992) Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol Lett 75:37–42

    Article  PubMed  Google Scholar 

  • Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrate in a stirred tank reactor. Hydrometallurgy 104:99–105

    Article  CAS  Google Scholar 

  • Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M (2011) Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106:84–92

    Article  CAS  Google Scholar 

  • Ahonen L, Tuovinen O (1993) Redox potential-controlled bacterial leaching of chalcopyrite ores. In: Torma A, Wey J, Lakshmanan V (eds) Biohydrometallurgical technologies, Bioleaching Processes. The Minerals, Metals and Materials Society, Warrendale, PA, pp 571–578

    Google Scholar 

  • Akcil A, Ciftci H, Deveci H (2007) Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner Eng 20:310–318

    Article  CAS  Google Scholar 

  • Astudillo C, Acevedo F (2008) Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy 92:11–15

    Article  CAS  Google Scholar 

  • Bacelar-Nicolau P, Johnson D (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker B, Banfield J (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  PubMed  Google Scholar 

  • Ballester A, González F, Blázquez M, Gómez C, Mier J (1990) The influence of several ions in the bioleaching of metal sulphides. Hydrometallurgy 23:221–235

    Article  CAS  Google Scholar 

  • Bevilaqua D, Lahti-Tommila H, Garcia O Jr, Puhakka J, Tuovinen O (2014) Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22oC. Int J Miner Process 132:1–7

    Article  CAS  Google Scholar 

  • Boon M, Ras C, Heijnen J (1999) The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Appl Microbiol Biotechnol 51:813–819

    Article  CAS  Google Scholar 

  • Brombacher C, Bachofen R, Brandl H (1997) Biohydrometallurgical processing of solids: a patent review. Appl Microbiol Biotechnol 48:577–587

    Article  CAS  Google Scholar 

  • Bruhn D, Thompson D, Naoh K (1999) Microbial ecology assessment of a mixed copper oxide/sulfide dump leach operation. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment. Toward the mining of the 21st century, process metallurgy. Elsevier, Amsterdam, pp 799–808

    Google Scholar 

  • Bryan C, Joulian C, Spolaore P, El Achbouni H, Challan-Belval S, Morin D, d’Hugues P (2011) The efficiency of indigenous and designed consortia in bioleaching stirred tank reactors. Miner Eng 24:1149–1156

    Article  CAS  Google Scholar 

  • Cameron R, Yeung C, Greer C, Gould W, Mortazavi S, Bédard P, Morin L, Lortie L, Dinardo O, Kennedy K (2010) The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred—tank reactors at different combinations of temperature and pH. Hydrometallurgy 104:207–215

    Article  CAS  Google Scholar 

  • Cancho L, Blázquez M, Ballester A, González F, Muñoz J (2007) Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system. Hydrometallurgy 87:100–111

    Article  CAS  Google Scholar 

  • Clark D, Norris P (1996) Acidomicrobium ferrooxidans gen. Nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology (UK) 142:785–790

    Article  CAS  Google Scholar 

  • Coram N, Rawlings D (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates south African commercial biooxidation tanks that operate at 40°C. Appl Environ Microbiol 68:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Córdoba E, Muñoz J, Blázquez M, González F, Ballester A (2008a) Leaching of chalcopyrite with ferric ion. Part I: general aspects. Hydrometallurgy 93:81–87

    Article  CAS  Google Scholar 

  • Córdoba E, Muñoz J, Blázquez M, González F, Ballester A (2008b) Leaching of chalcopyrite with ferric ion. Part II: effect of redox potential. Hydrometallurgy 93:88–96

    Article  CAS  Google Scholar 

  • Costerton J, Lewandowski Z, Caldwell D, Korber D, Lappin-Scott H (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Das T, Ayyappan S, Chaudhury GR (1999) Factors affecting bioleaching kinetics of sulfide ores using acidophilic microоrganisms. Biometals 12:1–10

    Article  Google Scholar 

  • d’Hugues P, Foucher S, Galle-Cavalloni P, Morin D (2002) Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int J Miner Process 66:107–119

    Article  Google Scholar 

  • d’Hugues P, Joulian C, Spolaore P, Morin D, Bryan C, Challan-Belval S, El Achbouni H (2009) Adaptation and evolution of microbial consortia in a stirred tank reactor bioleaching system: indigenous population versus a defined consortium. Adv Mat Res 71:79–82

    Google Scholar 

  • Demergasso C, Galeguillos P, Escudero L, Zepeda V, Castillo D, Casamayor E (2005) Molecular characterization of microbial population in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–253

    Article  CAS  Google Scholar 

  • Dew D, Lawson E, Broadhurst J (1997) The BIOX process for biooxidation of gold-bearing ores or concentrates. In: Rawlings D (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin, pp 45–80

    Chapter  Google Scholar 

  • Dew D, Muhlbauer R, van Buuren C (1999) Bioleaching of copper sulphide concentrates with mesophiles and thermophiles. Alta copper 99 Brisbane, Australia

    Google Scholar 

  • Donati E, Sand W (2007) Microbial processing of metal sulphides. Springer, Berlin, pp 1–314

    Book  Google Scholar 

  • Dopson M, Lindstrom EB (1999) Potential role of Thiobacillus caldus in Arsenopyrite Leaching. Appl Environ Microbiol 65:36–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopson M, Lindstrom E (2004) Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite and chalcopyrite. Microb Ecol 48:19–28

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi P, Bond P (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Edwards K, Schrenk M, Hamers R, Banfield J (1998) Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am Mineral 83:1444–1453

    Article  CAS  Google Scholar 

  • Edwards K, Goebel B, Rodgers T, Schrenk M, Gihring T, Cardona M, Mcguire M, Hamers R, Pace N, Banfield J (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179

    Article  CAS  Google Scholar 

  • Edwards K, Bond P, Gihring T, Banfield J (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 279:1796–1799

    Article  Google Scholar 

  • Ehrlich H (1999) Past, present and future of biohydrometallurgy. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, IBS99. Elsevier, Amsterdam, pp 3–12

    Google Scholar 

  • Falco L, Pogliani C, Curutchet G, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71:31–36

    Article  CAS  Google Scholar 

  • Fu B, Zhou H, Zhang R, Qiu G (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodet Biodegrad 62:109–115

    Article  CAS  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter K (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Article  Google Scholar 

  • Fuchs T, Huber H, Burggraf S, Stetter K (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst. Appl Microbiol 19:56–60

    CAS  Google Scholar 

  • Gahan C, Srichandan H, Kim D, Akci A (2012) Biohydrometallurgy and biomineral processing technology: a review on its past, present and future. Res J Recent Sci 10:85–99

    Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehrke T, Hallmann R, Kinzler K, Sand W (2001) The EPS of Acidithiobacillus ferrooxidans - a model for structure-function relationships of attached bacteria and their physiology. Water Sci Technol 43:159–167

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Govender Y, Pinches A (2010) Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy 104:414–419

    Article  CAS  Google Scholar 

  • Goebel B, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golyshina O, Pivovarova T, Karavaiko G, Kondrateva T, Moore E, Abraham W, Lunsdorf H, Timmis K, Yakimov M, Golyshin P (2000) Ferroplasma acidiphilum gen. Nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. Nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol 50:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Gómez E, Ballester A, Blázquez M, González F (1999) Silvercatalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy 51:37–46

    Article  Google Scholar 

  • Haghshenas D, Alamdari E, Torkmahalleh M, Bonakdarpour B, Nasernejad B (2009) Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Miner Eng 22:1299–1306

    Article  CAS  Google Scholar 

  • Harneit K, Goksel A, Kock D, Klock J, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidiothiobacillus ferrooxidans, Acidiothiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254

    Article  CAS  Google Scholar 

  • Hawkes R, Franzmann P, Plumb J (2006) Moderate thermophiles including “Ferroplasma cuprexacervatum” sp. Nov., dominate an industrial scale chalcocite heap bioleaching operation. Hydrometallurgy 83:229–236

    Article  CAS  Google Scholar 

  • Hippe H (2000) Leptospirillum gen. Nov. (ex Markosyan 1972), nom. Rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. Rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50:501–503

    Article  PubMed  Google Scholar 

  • Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. Nov., sp. nov., an aerobic bacteriophyllcontaining bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Hiroyoshi N, Hirota M, Hirajima T, Tsunekawa M (1999) Inhibitory effect of ironoxidizing bacteria on ferrous-promoted chalcopyrite leaching. Biotechnol Bioeng 64:478–483

    Article  CAS  PubMed  Google Scholar 

  • Hiroyoshi N, Miki H, Hirajima T, Tsunekawa M (2000) A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy 57:31–38

    Article  CAS  Google Scholar 

  • Hiroyoshi N, Kuroiwa S, Miki H, Tsunekawa M, Hirajima T (2007) Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 87:1–10

    Article  CAS  Google Scholar 

  • Howard D, Crundwell F (1999) A kinetic study of the leaching of chalcopyrite with Sulfolobus metallicus. In: Biohydrometallurgy and the environment toward the mining of the 21st century. Elsevier, Amsterdam, pp 209–217

    Google Scholar 

  • Johnson D (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Johnson D (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–157

    Article  CAS  Google Scholar 

  • Johnson D (2014) Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Roberto F (1997) Biodiversity of acidophilic bacteria in mineral leaching and related environments. In: Proceedings of IBS Biomine’ 97 Conf., Australian Mineral Foundation, Glenside, Australia, Part 3, pp 1–10

    Google Scholar 

  • Johnson D, Ghauri M, Said M (1992) Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron. Appl Environ Microbiol 58:1423–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson D, Okibe N, Hallberg K (2005) Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis. J Microbiol Methods 60:299–313

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Okibe N, Wakeman K, Yajie L (2008) Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver. Hydrometallurgy 94:42–47

    Article  CAS  Google Scholar 

  • Keller L, Murr L (1982) Acid-bacterial and ferric sulfate leaching of pyrite single crystals. Biotechnol Bioeng 24:83–96

    Article  CAS  PubMed  Google Scholar 

  • Kelly D, Wood A (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. Nov., Halothiobacillus gen. Nov., and Thermithiobacillus gen. Nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Kelly D, Wood A (2005) Genus I. Acidothiobacillus. In: Brener D, Krieg N, Staley R (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 60–62

    Google Scholar 

  • Kurosawa N, Itoh Y, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. Nov., sp. nov., a novel extremely thermophilic acidophile of the orderSulfolobales. Int J Syst Bacteriol 48:451–456

    Article  PubMed  Google Scholar 

  • Lizama H, Suzuki I (1989) Synergistic competitive inhibition of ferrous iron oxidation by thiobacillus ferrooxidans by increasing concentrations of ferric iron and cells. Appl Environ Microbiol 55:2588–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnani D, Solioz M (2007) How bacteria handle copper. In: Nies D, Silver S (eds) Bacterial transition metal homeostasis. Springer, Heidelberg, pp 259–285

    Google Scholar 

  • Mejia E, Ospina J, Marquez M, Morales A (2009) Oxidation of chalcopyrite (CuFeS2) by Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans like bacterium in shake flasks. Adv Mat Res 71:385–388

    Google Scholar 

  • Meyer G, Schneider-Merck T, Böhme S, Sand W (2002) A simple method for investigations on the chemotaxis of a. ferrooxidans and D. vulgaris. Acta Biotechnol 22:391–399

    Article  CAS  Google Scholar 

  • Mikkelsen D, Kappler U, McEwan A, Sly L (2006) Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. Environ Microbiol 8:2050–2055

    Article  CAS  PubMed  Google Scholar 

  • Navarro C, Orellana L, Mauriaca C, Jerez C (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris P, Clark D, Owen J, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783

    Article  CAS  PubMed  Google Scholar 

  • Norris P, Burton N, Foulis N (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  PubMed  Google Scholar 

  • Ohmura N, Kitamura K, Saiki H (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl Environ Microbiol 59:4044–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto H, Nakayama R, Kuroiwa S, Hiroyoshi N, Tsunekawa M (2005) Normalized redox potential used to assess chalcopyrite column leaching. J MMIJ 121:246–254

    Article  CAS  Google Scholar 

  • Okibe N, Johnson D (2004) Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Biotechnol Bioeng 87:574–583

    Article  CAS  PubMed  Google Scholar 

  • Okibe N, Gericke M, Hallberg K, Johnson D (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson G, Brierley J, Brierley C (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257

    Article  CAS  PubMed  Google Scholar 

  • Orell A, Navarro C, Arancibia R, Mobarec J, Jerez C (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848

    Article  CAS  PubMed  Google Scholar 

  • Orellana L, Jerez C (2011) A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage. Appl Microbiol Biotechnol 92:761–767

    Article  CAS  PubMed  Google Scholar 

  • Outten F, Huffman D, Hale J, Ó Halloran T (2001) The independent cue and cus system confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Dixon D (2006) Competitive bioleaching of pyrite and chalcopyrite. Hydrometallurgy 83:40–49

    Article  CAS  Google Scholar 

  • Puig S, Thiele D (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  CAS  PubMed  Google Scholar 

  • Rawlings D (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Rawlings D (2005) Characteristics and adaptability of iron- and sulfuroxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  CAS  PubMed  Google Scholar 

  • Rawlings D, Coram N, Gardner M, Deane S (1999) Thiobacillus caldus and Leptospirillum ferrooxians are widely distributed in continuous-flow biooxidation tanks used to treat a variety of metal-containing ores and concentrates. In: Biohydrometrallurgy and the environment toward the mining of the 21st century, part A. Elsevier, Amsterdam, pp 773–778

    Google Scholar 

  • Rawlings D, Dew D, du Plessis C (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Grass G (2003) Escherichia coli mechanism of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez Y, Ballester A, Bla’zquez M, Gonza’lez F, Muñoz J (2003) New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71:47–56

    Article  CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  PubMed  Google Scholar 

  • Sampson M, Phillips C, Blake R II (2000) Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Miner Eng 13:373–389

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand W, Gehrke T, Hellmann R, Schippers A (1995) Sulfur chemistry, biofilm and the indirect attack mechanism a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa P, Schippers A (2001) Biochemistry of bacterial leaching- direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Sandström A, Shchukarev A, Paul J (2005) XPS characterisation of chalcopyrite chemically and bioleached at high and low redox potential. Miner Eng 18:505–515

    Article  CAS  Google Scholar 

  • Sanhueza A, Ferrer I, Vargas T, Amils R, Jerez C (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51:115–129

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacreial leaching of metal sulfides proceeds by two indirect mechanisms with thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons S, DiBartolo G, Denef V, Goltsman D, Thelen M, Banfield J (2008) Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol 6:1427–1442

    Article  CAS  Google Scholar 

  • Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417–1423

    Article  CAS  Google Scholar 

  • Stott M, Walting H, Fransmann P, Sutton D (2000) The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13:1117–1127

    Article  CAS  Google Scholar 

  • Sutherland I (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19:119–132

    Article  CAS  PubMed  Google Scholar 

  • Temple K, Colmer A (1951) The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol 62:605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Third K, Cord-Ruwisch R, Watling H (2000) The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy 57:225–233

    Article  CAS  Google Scholar 

  • Third K, Cord-Ruwisch R, Watling H (2002) Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnol Bioeng 78:433–441

    Article  CAS  PubMed  Google Scholar 

  • Tributsch H (1999) Direct versus indirect bioleaching. In: Proceedings of the International biohydrometallurgy symposium IBS’99. Elsevier, Amsterdam, pp 51–60

    Google Scholar 

  • Tuffin I, Hector S, Deane S, Rawlings D (2006) Resistance determinants of highly arsenic-resistant strain of Leptospirilum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuovinen O, Bhatti T, Bigham J, Hallberg K, Garcia O, Lindstrom E (1994) Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Appl Environ Microbiol 60:3268–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Aswegen P, Godfrey M, Miller D, Haines A (1991) Developments and innovations in bacterial oxidation of refractory ores. Miner Metall Process:188–191

    Google Scholar 

  • Vardanyan N (1998) The effect of external factors on pyrite oxidation by Sulfobacillus thermosulfidooxidans subsp. Asporogenes. Biotechnology 6:48–55

    Google Scholar 

  • Vardanyan N (2003) Oxidation of pyrite and chalcopyrite by mixed cultures of Sulfobacilli and other Sulphur and Iron oxidizing bacteria. Biotechnology 6:79–83

    Google Scholar 

  • Vardanyan N, Akopyan V (2003) Leptospirillum-like bacteria and evaluation of their role in pyrite oxidation. Microbiology 72:438–442

    Article  CAS  Google Scholar 

  • Vardanyan A, Vardanyan N (2016) Bioleaching of pyrite and chalcopyrite by new isolated thermotolerate sulfur-oxidizing bacteria Acidithiobacillus tandzuti sp.nov. Int J Sci Eng Res 7:203–207

    Google Scholar 

  • Vardanyan N, Karavaiko G, Pivovarova T (1990) The effect of organic substances on the growth and oxidation of inorganic substrates by Sulfobacillus thermosulfidooxidanssub sp. asporogenes. Microbiology 59:411–417

    Google Scholar 

  • Vardanyan A, Stepanyan S, Vardanyan N, Markosyan L, Sand W, Vera V, Zhang R (2015) Study and assessment of microbial communities in natural and commercial bioleaching systems. Miner Eng 81:167–172

    Article  CAS  Google Scholar 

  • Wang Y, Zeng W, Qiu G, Chen X, Zhou H (2014) A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite at high pulp density. Appl Environ Microbiol 80:741–750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watling H (2006) The bioleaching of sulphide minerals with emphasis on copper sulphids—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  • Watling H, Collinson D, Shiers D, Bryan C, Watkin E (2013) Effects of pH, temperature and solids loading on microbial community structure during batch culture on a polymetallic ore. Miner Eng 48:68–76

    Article  CAS  Google Scholar 

  • Yu R, Tan J, Yang P, Sun J, Ouyang X, Dai Y (2008) EPS-contact-leaching mechanism of chalcopyrite concentrates by a. ferrooxidans. Trans Nonferrous Met Soc Chin 18:1427–1432

    Article  CAS  Google Scholar 

  • Yu R, Zhong D, Miao L, Wu F, Qiu G, Gu G (2011) Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by acidithiobacillus ferrooxidans. Trans Nonferrous Met Soc Chin 21:1634–1640

    Article  CAS  Google Scholar 

  • Zhang R, Wei M, Ji H, Chen X, Qiu G, Zhou H (2009) Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl Microbiol Biotechnol 81:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhang R, Hu P, Zeng W, Xie Y, Wu C, Qiu G (2008) Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J Appl Microbiol 105:591–601

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zeng W, Yang Z, Xie Y, Qiu G (2009) Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour Technol 100:515–520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narine Vardanyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vardanyan, N., Vardanyan, A. (2021). Thermoacidophiles for Bioleaching of Copper. In: Egamberdieva, D., Birkeland, NK., Li, WJ., Panosyan, H. (eds) Microbial Communities and their Interactions in the Extreme Environment. Microorganisms for Sustainability, vol 32. Springer, Singapore. https://doi.org/10.1007/978-981-16-3731-5_9

Download citation

Publish with us

Policies and ethics