Skip to main content
Log in

Numerical investigation of influence of pantograph parameters and train length on aerodynamic drag of high-speed train

受电弓参数和列车长度对高速列车气动阻力影响的数值研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation (DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train.

摘要

本研究通过延迟分离涡模拟 (DDES) 方法研究了不同的受电弓参数和列车长度对高速列车气动阻 力的影响, 其中列车的几何形状选择带有受电弓的高速列车和具有3、 5 、8、 10、 12、 16 和 17 辆车 不同编组数的高速列车, 数值计算结果通过风洞试验得到验证, 其数值计算结果与风洞试验结果相差 3.6%。 分析了编组数以及受电弓的位置、 数量和结构对高速列车周围流场和尾涡流的影响, 中间车的 空气阻力沿空气流动方向逐渐减小, 而受电弓的空气阻力随其向后移动而减小, 其中第一个受电弓的 空气阻力减小得十分明显, 随着受电弓数量的增加, 其对后面车辆的空气阻力减小的影响更加明显。 本文还提出了带有受电弓的高速列车气动阻力的工程应用公式。 对于10 车和17 车编组的列车,应用 公式和仿真结果之间的总空气阻力差异分别为 1.2% 和 0.4%。 本研究中提出的工程应用公式可以很好 地指导高速列车的设计阶段。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TIAN H. Formation mechanism of aerodynamic drag of high-speed train and some reduction measures [J]. Journal of Central South University of Technology, 2009, 16(1): 166–171. DOI: https://doi.org/10.1007/s11771-009-0028-0.

    MathSciNet  Google Scholar 

  2. SOMASCHINI C, ARGENTINI T, ROCCHI D, SCHITO P, TOMASINI G. A new methodology for the assessment of the running resistance of trains without knowing the characteristics of the track: Application to full-scale experimental data [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1814–1827. DOI: https://doi.org/10.1177/0954409717751754.

    Google Scholar 

  3. BAKER C. The flow around high speed trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6, 7): 277–298. DOI: https://doi.org/10.1016/j.jweia.2009.11.002.

    Google Scholar 

  4. FLYNN D, HEMIDA H, BAKER C. On the effect of crosswinds on the slipstream of a freight train and associated effects [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14–28. DOI: https://doi.org/10.1016/j.jweia.2016.07.001.

    Google Scholar 

  5. PENG Y, FAN C, HU L, PENG S L, XIE P P, WU F G, YI S G. Tunnel driving occupational environment and hearing loss in train drivers in China [J]. Occup Environ Med, 2019, 76(2): 97–104. DOI: https://doi.org/10.1136/oemed-2018-105269.

    Google Scholar 

  6. XIE P P, PENG Y, WANG T I, ZHANG H H. Risks of ear complaints of passengers and drivers while trains are passing through tunnels at high speed: A numerical simulation and experimental study [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1283. DOI: https://doi.org/10.3390/ijerph16071283.

    Google Scholar 

  7. GUO Z J, LIU T H, CHEN Z W, XIE T Z, JIANG Z H. Comparative numerical analysis of the slipstream caused by single and double unit trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 395–408. DOI: https://doi.org/10.1016/j.jweia.2017.11.022.

    Google Scholar 

  8. NIU J Q, ZHOU D, LIU T H, LIANG X F. Numerical simulation of aerodynamic performance of a couple multiple units high-speed train [J]. Vehicle System Dynamics, 2017, 55(5): 681–703. DOI: https://doi.org/10.1080/00423114.2016.1277769.

    Google Scholar 

  9. STERLING M, BAKER C J, JORDAN S C, JOHNSON T. A study of the slipstreams of high-speed passenger trains and freight trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177–193. DOI: https://doi.org/10.1243/09544097 JRRT133.

    Google Scholar 

  10. WANG T T, JIANG C W, GAO Z X, LEE C H. Numerical simulation of sand load applied on high-speed train in sand environment [J]. Journal of Central South University, 2017, 24(2): 442–447. DOI: https://doi.org/10.1007/s11771-017-3446-4.

    Google Scholar 

  11. GALLAGHER M, MORDEN J, BAKER C, SOPER D, QUINN A, HEMIDA H, STERLING M. Trains in crosswinds-Comparison of full-scale on-train measurements, physical model tests and CFD calculations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 428–444. DOI: https://doi.org/10.1016/j.jweia.2018.03.002.

    Google Scholar 

  12. CHEN Z W, LIU T H, YAN C G, YU M, GUO Z J, WANG T T. Numerical simulation and comparison of the slipstreams of trains with different nose lengths under crosswind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 256–272. DOI: https://doi.org/10.1016/jjweia.2019.05.005.

    Google Scholar 

  13. SICOT C, DELIANCOURT F, BOREE J, AGUINAGA S, BOUCHET J P. Representativeness of geometrical details during wind tunnel tests. Application to train aerodynamics in crosswind conditions [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 186–196. DOI: https://doi.org/10.1016/jjweia.2018.01.040.

    Google Scholar 

  14. ZHANG L, THUROW K, STOLL N, LIU H. Influence of the geometry of equal-transect oblique tunnel portal on compression wave and micro-pressure wave generated by high-speed trains entering tunnels [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 1–17. DOI: https://doi.org/10.1016/jjweia.2018.05.003.

    Google Scholar 

  15. BAKER C J, BROCKIE N J. Wind tunnel tests to obtain train aerodynamic drag coefficients: Reynolds number and ground simulation effects [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1991, 38(1): 23–28. DOI: https://doi.org/10.1016/0167-6105(91)90024-Q.

    Google Scholar 

  16. BELL J R, BURTON D, THOMPSON M C, HERBST A H, SHERIDAN J. A wind-tunnel methodology for assessing the slipstream of high-speed trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 1–19. DOI: https://doi.org/10.1016/j.jweia.2017.03.012.

    Google Scholar 

  17. LI Z W, YANG M Z, HUANG S, LIANG X F. A new method to measure the aerodynamic drag of high-speed trains passing through tunnels [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 110–120. DOI: https://doi.org/10.1016/j.jweia.2017.09.017.

    Google Scholar 

  18. GARCÍA J, MUÑOZ-PANIAGUA J, CRESPO A. Numerical study of the aerodynamics of a full scale train under turbulent wind conditions, including surface roughness effects [J]. Journal of Fluids and Structures, 2017, 74: 1–18. DOI: https://doi.org/10.1016/jjfluidstructs.2017.07.007.

    Google Scholar 

  19. WANG S B, BURTON D, HERBST A H, SHERIDAN J, THOMDSON M C. The effect of the ground condition on high-speed train slipstream [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 230–243. DOI: https://doi.org/10.1016/j.jweia.2017.11.009.

    Google Scholar 

  20. TAO Y, YANG M, QIAN B, WU F, WANG T T. Numerical and experimental study on ventilation panel models in a subway passenger compartment [J]. Engineering, 2019, 5(2): 329–336. DOI: https://doi.org/10.1016/j.eng.2018.12.007.

    Google Scholar 

  21. LU Y B, WANG T T, YANG M Z, QIAN B S. The influence of reduced cross-section on pressure transients from high-speed trains intersecting in a tunnel [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104161. DOI: https://doi.org/10.1016/jjweia.2020. 104161.

    Google Scholar 

  22. LI Tian, QIN Deng, ZHANG Ji-ye. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind [J]. Chinese Journal of Mechanical Engineering. 2019, 32: 85. DOI: https://doi.org/10.1186/s10033-019-0402-2.

    Google Scholar 

  23. JI P, WANG T, WU F. Calculation grid and turbulence model for numerical simulating pressure fluctuations in high-speed train tunnel [J]. Journal of Central South University, 2019, 26(10): 2870–2877. DOI: https://doi.org/10.1007/s11771-019-4220-6.

    Google Scholar 

  24. WANG T, LEE C, YANG M. Influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel [J]. Journal of Central South University, 2018, 25(11): 2831–2840. DOI: https://doi.org/10.1007/s11771-018-3956-8.

    Google Scholar 

  25. HEMIDA H, KRAJNOVIĆ S. LES study of the influence of a train-nose shape on the flow structures under cross-wind conditions [J]. Journal of Fluids Engineering, 2008, 130(9). DOI: https://doi.org/10.1115/1.2953228.

  26. TAN X M, WANG T T, QIAN B S, QIN B, LU Y B. Aerodynamic noise simulation and quadrupole noise problem of 600 km/h high-speed train [J]. IEEE Access, 2019, 7: 124866–124875. DOI: https://doi.org/10.1109/ACCESS.2019.2939023.

    Google Scholar 

  27. LIU J, ZHOU D, LIANG X F, NIU J Q, LIU T H. Numerical simulation of the Reynolds number effect on the aerodynamic pressure in tunnels [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173: 187–198. DOI: https://doi.org/10.1016/j.compfluid.2011.12.012.

    Google Scholar 

  28. MULD T W, EFRAIMSSON G, HENNINGSON D S. Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition [J]. Computers & Fluids, 2012, 57: 87–97. DOI: https://doi.org/10.1016/j.compfluid.2011.12.012.

    MathSciNet  MATH  Google Scholar 

  29. WANG T T, WU F, YANG M Z, JI P, QIAN B S. Reduction of pressure transients of high-speed train passing through a tunnel by cross-section increase [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 183: 235–242. DOI: https://doi.org/10.1016/jjweia.2018.11.001.

    Google Scholar 

  30. MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles [M]// The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer, 2004: 339–352. DOI: https://doi.org/10.1007/978-3-540-44419-0_30.

    Google Scholar 

  31. SHUR M L, SPALART P R, STRELETS M K, TRAVIN A. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities [J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638–1649. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001.

    Google Scholar 

  32. MUNOZ-PANIAGUA J, GARCÍA J, LEHUGEUR B. Evaluation of RANS, SAS and IDDES models for the simulation of the flow around a high-speed train subjected to crosswind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 50–66. DOI: https://doi.org/10.1016/j.jweia.2017.09.006.

    Google Scholar 

  33. HUANG Z X, CHEN L, JIANG K L. Influence of length of train formation and vestibule diaphragm structure on aerodynamic drag of high-speed train model [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 36–41.

    Google Scholar 

  34. MULD T W, EFRAIMSSON G, HENNINGSON D S. Wake characteristics of high-speed trains with different lengths [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(4): 333–342. DOI: https://doi.org/10.1177/0954409712473922.

    Google Scholar 

  35. BELL J R, BURTON D, THOMPSON M C, HERBST A, SHERIDAN J. The effect of length to height ratio on the wake structure and surface pressure of a high-speed train [C]// 19th Australasian Fluid Mechanics Conference (AMFC). Melbourne, Australia, 2014: 8–11.

  36. JIA L, ZHOU D, NIU J. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths [J]. PloS One, 2017, 12(12): e0189798. DOI: https://doi.org/10.1371/journal.pone.0189798.

    Google Scholar 

  37. NIU J, ZHOU D, LIANG X. Numerical investigation of the aerodynamic characteristics of high-speed trains of different lengths under crosswind with or without windbreaks [J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 195–215. DOI: https://doi.org/10.1080/19942060.2017.1390786.

    Google Scholar 

  38. CEN European Standard, CEN EN 14067-4.2009. Railway applications- Aerodynamics. Part 4: Requirements and test procedures for aerodynamics on open Track [S].

  39. HEMIDA H, KRAJNOVIĆ S. Exploring flow structures around a simplified ICE2 train subjected to a 30 side wind using LES [J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(1): 28–41. DOI: https://doi.org/10.1080/19942060.2009.11015252.

    Google Scholar 

  40. ORELLANO A, SCHOBER M. Aerodynamic performance of a typical high-speed train [J]. WSEAS Transactions on Fluid Mechanics, 2006, 1(5): 379–386.

    Google Scholar 

  41. BELL J R, BURTON D, THOMPSON M, HERBST A H. Wind tunnel analysis of the slipstream and wake of a high-speed train [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134: 122–138. DOI: https://doi.org/10.1016/jjweia.2014.09.004.

    Google Scholar 

  42. ZHANG L, YANG M, LIANG X. Experimental study on the effect of wind angles on pressure distribution of train streamlined zone and train aerodynamic forces [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 330–343. DOI: https://doi.org/10.1016/jjweia.2018.01.024.

    Google Scholar 

  43. CEN European Standard, CEN EN 14067-6.2010. Railway applications- Aerodynamics. Part 6: Requirements and test procedures for cross wind assessment [S].

  44. CEN European Standard, CEN EN 14067-4. 2013. Railway applications-Aerodynamics. Part 4: Requirements and test procedures for aerodynamics on open track [S].

  45. ROCHARD B P, SCHMID F. A review of methods to measure and calculate train resistances [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214(4): 185–199. DOI: https://doi.org/10.1243/0954409001531306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-tian Wang  (王田天).

Additional information

Foundation item: Projects(2018YFB1201801-4, 2018YFB1201804-2) supported by National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Zk., Wang, Tt. & Wu, F. Numerical investigation of influence of pantograph parameters and train length on aerodynamic drag of high-speed train. J. Cent. South Univ. 27, 1334–1350 (2020). https://doi.org/10.1007/s11771-020-4370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4370-6

Key words

关键词

Navigation