Skip to main content
Log in

Order of sphalerite and galena precipitation: A case study from lead-zinc deposits in southwest China

闪锌矿和方铅矿的沉淀顺序: 以中国西南铅锌矿床为例

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base (center) of the ore body to the top (outermost), the mineral zones are as follows. coarse-grained pyrite and a little puce sphalerite; I-2: brown sphalerite, galena, and ferro-dolomite; I-3: galena, sandy beige and pale yellow sphalerite, and calcite; and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as \(\lg {f_{{{\rm{O}}_2}}} - \lg {f_{{{\rm{S}}_2}}}\), \({\rm{pH}} - \lg {f_{{{\rm{O}}_2}}}\), pH−lg[Pb2+] and pH−lg[HS], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.

摘要

中国西南的大部分铅锌矿床具有明显的矿物组合分带特征, 尤其是会泽和昭通铅锌矿床. 矿物组合分带具有垂向分带和水平分带, 即从矿体底部(中心)到顶部(外围)具有如下矿物分带: I-1: 粗晶黄铁矿+少量深色闪锌矿; I-2: 棕色闪锌矿+方铅矿+铁白云石; I-3: 方铅矿+浅褐色和黄色闪锌矿+方解石; I-4: 细晶黄铁矿+白云石+方解石. 其中, 闪锌矿是不同分带的标志性矿物. 从 I-1 到 I-3, 闪锌矿颜色从深变浅, 晶粒从粗晶变为细晶, 结构从浸染状变为细脉状. 这种矿物分带现象不仅在微观尺度可以观察到, 在宏观尺度上也同样存在. 它是由闪锌矿和方铅矿的沉淀顺序引起的. 本文在研究金属矿物和流体包裹体的基础上绘制了几类热力学相图, 如 \(\lg {f_{{{\rm{O}}_2}}} - \lg {f_{{{\rm{S}}_2}}}\), \({\rm{pH}} - \lg {f_{{{\rm{O}}_2}}}\), pH−lg[Pb2+]和pH−lg[HS]讨论了不同pH, 氧逸度, 硫逸度和离子活度条件下铅锌运移沉淀过程中闪锌矿和方铅矿沉淀顺序的制约条件, 解释了矿物组合分带的形成机制, 认为闪锌矿和方铅矿沉淀顺序的核心控制条件是硫逸度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GARRELS R M. The Mississippi valley type lead-zinc deposits and the problem of mineral zoning [J]. Econ Geol, 1941, 36: 729–744. DOI:https://doi.org/10.2113/gsecongeo.36.7.729.

    Article  Google Scholar 

  2. MIYAZAWA T. Regional lateral zoning of the Mesozoic to early Tertiary endogenic lead-zinc and copper deposits in East Asia and its geological background, with some comments on the drifting of the Japanese Islands [J]. Shigen-Chishitsu, 1985, 35: 31–39. DOI: 10.11456@shigenchishitsu1951.35.31.

    Google Scholar 

  3. WEI Ai-ying, XUE Chuan-dong, HONG Tuo, LUO Da-feng, LI Lian-ran, WANG Feng, ZHOU Gao-ming, LIU Xing. The alteration-mineralization zoning model for the Maoping lead-zinc deposit, northeastern Yunnan Province: Evidence from alternation-lithofacies mapping [J]. Acta Petrologica Et Mineralogica, 2012, 31(5): 723–735. DOI: https://doi.org/10.3969/j.issn.1000-6524.2012.05.010. (in Chinese)

    Google Scholar 

  4. WU Guang-feng, LI Jian, WANG Bo, LI Xiao-ya. Geochemical characteristics of primary halo of low grade lead-zinc at Jiazitaigou [J]. Geology of Chemical Minerals, 2016, 38(1): 7–15. DOI: https://doi.org/10.3969/j.issn.1006-5296.2016.01.002. (in Chinese)

    Google Scholar 

  5. BEALES F W, JACKSON S A. Precipitation of lead-zinc ores in carbonate reservoirs as illustrated by Pine Point ore field, Canada [J]. T I Min Metall B, 1966, 75: 278–285.

    Google Scholar 

  6. SKINNER B J. Precipitation of Mississippi Valley-type ores: A possible mechanism. In: J.S. Brown, Genesis of Stratiform Lead-Zinc-Barite-Fluorite Deposits (Mississippi Valley-type Deposits) [J]. Economic Geology, 1967, 3: 363–370.

    Google Scholar 

  7. HELGESON H C. A chemical and thermodynamic model of ore deposition in hydrothermal systems [C]// MORGAN B A. Symposium: Mineralog. Soc America SPEC, 1970: 155–186.

  8. ANDERSON G M. The hydrothermal transport and deposition of galena and Sphalerite near 100 °C [J]. Economic Geology, 1973, 68(4): 480–492. DOI: https://doi.org/10.2113/gsecongeo.68.4.480.

    Article  Google Scholar 

  9. ANDERSON G M. Precipitation of Mississippi Valley-Type ores [J]. Economic Geology, 1975, 70(5): 937–942. DOI: https://doi.org/10.2113/gsecongeo.70.5.937.

    Article  Google Scholar 

  10. BEALES F W. Precipitation mechanisms for Mississippi Valley-type ore deposits [J]. Economic Geology, 1975, 70(5): 943–948. DOI:https://doi.org/10.2113/gsecongeo.70.5.943.

    Article  Google Scholar 

  11. HAGNI R D, TRANCYNGER T C. Sequence of deposition of the ore minerals at the Magmont Mine, Viburnum Trend, Southeast Missouri [J]. Economic Geology, 1977, 72(3): 451–464. DOI: https://doi.org/10.2113/gsecongeo.72.3.451.

    Article  Google Scholar 

  12. BARNES H L. Geochemistry of hydrothermal ore deposits [M]. John Wiley and Son, 1997.

  13. GIORDANO T H, BARNES H L. Lead transport in Mississippi valley-type ore solutions [J]. Economic Geology, 1981, 76(8): 2200–2211. DOI:https://doi.org/10.2113/gsecongeo.76.8.2200.

    Article  Google Scholar 

  14. APPOLD M S, WENZ Z J. Composition of ore fluid inclusions from the viburnum trend, southeast Missouri District, United States: Implications for transport and precipitation mechanisms [J]. Economic Geology, 2011, 106(1): 55–78. DOI:https://doi.org/10.2113/econgeo.106.1.55.

    Article  Google Scholar 

  15. WILKINSON J J. Sediment-hosted zinc-lead mineralization: Processes and perspectives [J]. Treatise on Geochemistry, 2013: 219–249. DOI: https://doi.org/10.1016/B978-0-08-095975-7.01109-8.

    Chapter  Google Scholar 

  16. BAYOT D, DEVILLERS M. Peroxo complexes of niobium(v) and tantalum(v) [J]. Coordination Chemistry Reviews, 2006, 250: 2610–2626. DOI: https://doi.org/10.1016/j.ccr.2006.04.011.

    Article  Google Scholar 

  17. LIU W, ETSCHMANN B, FORAN G, SHELLEY M, BRUGGER J. Deriving formation constants for aqueous metal complexes from XANES spectra: Zn2+ and Fe2+ chloride complexes in hypersaline solutions [J]. American Mineralogist, 2007, 92(5, 6): 761–770. DOI: https://doi.org/10.2138/am.2007.2225.

    Article  Google Scholar 

  18. ANDRI S. Iron(III) hydrolysis and solubility at 25 °C [J]. Environmental Science & Technology, 2007, 41(17): 6117–23. DOI: https://doi.org/10.1021/es070174h.

    Article  Google Scholar 

  19. ANTIGNANO A, MANNING C E. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: Implications for mobility of nominally insoluble elements [J]. Chemical Geology, 2008, 255(s1, 2): 283–293. DOI: https://doi.org/10.1016/j.chemgeo.2008.07.001.

    Article  Google Scholar 

  20. WILLIAMS-JONES A E, BOWELL R J, MIGDISOV A A. Gold in solution [J]. Elements, 2009, 5(5): 281–287. DOI: https://doi.org/10.2113/gselements.5.5.281.

    Article  Google Scholar 

  21. YARDLEY B W D, BODNAR R J. Fluids in the Continental Crust [J]. Geochemical Perspectives, 2014, 3(1): 1–127. https://pubs.geoscienceworld.org/perspectives/article-abstract/3/1/1/217791/fluids-in-the-continental-crust?redirectedFrom=fulltext.

    Article  Google Scholar 

  22. ANDERSON A J, MAYANOVIC R A, CHOU Yi-ming, BASSETT W A. XAFS investigations of zinc halide complexes up to supercritical conditions [M]. Ottawa: ON: NRC Research Press, 2000.

    Google Scholar 

  23. BASUKI N I. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits: Identifying thresholds for metal transport [J]. Exploration & Mining Geology, 2002, 11(1-4): 1–17. DOI: https://doi.org/10.2113/11.1-4.1.

    Article  Google Scholar 

  24. HARRIS D J, BRODHOLT J P, SHERMAN D M. Zinc complexation in hydrothermal chloride brines: Results from ab initio molecular dynamics calculations [J]. Journal of Physical Chemistry A, 2003, 107(7): 614–619. DOI: https://doi.org/10.1021/jp026098g.

    Article  Google Scholar 

  25. LEACH D L, SANGSTER D F, KELLEY K D, LARGE R R, GARVEN G, ALLEN C R, GUTZMER J, WALTERS S. Sediment-hosted lead-zinc deposits: A global perspective [J]. Econ Geol, 2005, 100: 561–607.

    Google Scholar 

  26. TAGIROV B R, SULEIMENOV O M, SEWARD T M. Zinc complexation in aqueous sulfide solutions: Determination of the stoichiometry and stability of complexes via ZnS (cr) solubility measurements at 100 °C and 150 bars [J]. Geochimica Et Cosmochimica Acta, 2007, 71(20): 4942–4953. DOI: https://doi.org/10.1016/j.gca.2007.08.012.

    Article  Google Scholar 

  27. TAGIROV B R, SEWARD T M. Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite [J]. Chemical Geology, 2010, 269(3, 4): 301–311. DOI: https://doi.org/10.1016/j.chemgeo.2009.10.005.

    Article  Google Scholar 

  28. TAGIROV B, ZOTOV A, SCHOTT J, SULEIMENOV O, KOROLEVA L. A potentiometric study of the stability of aqueous yttrium-acetate complexes from 25 to 175 °C and 1–1000 bar [J]. Geochimica Et Cosmochimica Acta, 2007, 71(7): 1689–1708. DOI:https://doi.org/10.1016/j.gca.2007.01.003.

    Article  Google Scholar 

  29. GIORDANO T H, BARNES H L. Ore solution chemistry VI; PbS solubility in bisulfide solutions to 300 °C [J]. Economic Geology, 1979, 74(7): 1637–1646. DOI: https://doi.org/10.2113/gsecongeo.74.7.1637.

    Article  Google Scholar 

  30. HAMANN R J, ANDERSON G M. Solubility of galena in sulfur-rich nacl solutions [J]. Economic Geology, 1978, 73(1): 96–100. DOI: https://doi.org/10.2113/gsecongeo.73.1.96.

    Article  Google Scholar 

  31. BARRETT T J, ANDERSON G M. The solubility of sphalerite and galena in NaCl brines [J]. Economic Geology, 1982, 77(8): 1923–1933. DOI: https://doi.org/10.2113/gsecongeo.77.8.1923.

    Article  Google Scholar 

  32. SEWARD T M. The formation of lead(II) chloride complexes to 300 °C: A spectrophotometric study [J]. Geochimica Et Cosmochimica Acta, 1984, 48(1): 121–134. DOI: https://doi.org/10.1016/0016-7037(84)90354-5.

    Article  Google Scholar 

  33. RUAYA J R, SEWARD T M. The stability of chlorozinc(II) complexes in hydrothermal solutions up to 350° C [J]. Geochimica Et Cosmochimica Acta, 1986, 50(5): 651–661. DOI: https://doi.org/10.1016/0016-7037(86)90343-1.

    Article  Google Scholar 

  34. BOURCIER W L, BARNES H L. Ore solution chemistry: VII. Stabilities of chloride and bisulphide complexes of zinc to 350 °C [J]. Economic Geology, 1987, 82(7): 1839–1863. DOI: https://doi.org/10.2113/gsecongeo.82.7.1839.

    Google Scholar 

  35. BARRETT T J, ANDERSON G M. The solubility of sphalerite and galena in 1–5 m NaCl solutions to 300 °C [J]. Geochimica Et Cosmochimica Acta, 1988, 52(4): 813–820. DOI: https://doi.org/10.1016/0016-7037(88)90353-5.

    Article  Google Scholar 

  36. SHANG Lin-bo, FAN Wen-ling, HU Rui-zhong, DENG Hai-lin. A thermodynamic study on paragensis and separation of silver, lead and zinc in hydrothermal solutions [J]. Acta Mineralogica Sinica, 2004, 24(1): 81–86. DOI: https://doi.org/10.3321/j.issn:1000-4734.2004.01.013. (in Chinese)

    Google Scholar 

  37. SHANG Lin-bo, HU Rui-zhong, FAN Wen-ling. The mechanisms of paragenesis and separation of silver, lead and zinc in hydrothermal solutions [J]. Chinese Journal of Geochemistry, 2005, 24(1): 82–89. DOI: https://doi.org/10.1007/bf02869692. (in Chinese)

    Article  Google Scholar 

  38. NRIAGU J O. Studies in the system pbs-nacl-h2s-h2o: Stability of lead(II) thiocomplexes at 90 °C [J]. Chemical Geology 1971, 8: 299–310. DOI: https://doi.org/10.1016/0009-2541(71)90023-4.

    Article  Google Scholar 

  39. NRIAGU J O, ANDERSON G M. Stability of the lead (II) chloride complexes at elevated temperatures [J]. Chemical Geology, 1971, 7: 171–184. DOI: https://doi.org/10.1016/0009-2541(71)90007-6.

    Article  Google Scholar 

  40. LEACH D L, TAYLOR R D. A deposit model for mississippi valley-type lead-zinc ores [R]. Chapter A of mineral deposit models for resource assessment: Scientific Investigations Report. U.S.geological Survey, 2010. http://minerals.cr.usgs.gov/.

  41. LEACH D L, SANGSTER D F. Mississippi Valley-Type lead-zinc deposits [J]. Geological Association of Canada Special Paper, 1993, 40: 289–314.

    Google Scholar 

  42. HAN Run-sheng, CHEN Jin, HUANG Zhi-long. Dynamics of tectonic ore-forming process and localization-prognosis of concealed orebodies-As exemplified by the huize super-large Zn-Pb-(Ag-Ge) District, Yunnan [M]. Beijing, China: Beijing Science Press, 2006. (in Chinese)

    Google Scholar 

  43. HAN Run-sheng, HU Yu-zhao, WANG Xue-kun, HOU Bao-hong, HUANG Zhi-long, CHEN Jin, WANG Feng, WU Peng, LI Bo, WANG Hong-jiang, DONG Ying, LEI Li. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in Northeastern Yunnan, China [J]. Acta Geologica Sinica, 2012a, 86(2): 280–293. DOI: https://doi.org/10.3969/j.issn.0001-5717.2012.02.007. (in Chinese)

    Google Scholar 

  44. HAN Run-sheng, LIU Cong-qiang, HUANG Zhi-long, CHEN Jin, MA De-yun, LEI Li, MA Geng-sheng. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan [J]. Ore Geology Reviews, 2007, 31: 360–383. DOI: https://doi.org/10.1016/j.oregeorev.2006.03.003.

    Article  Google Scholar 

  45. HAN Run-sheng, WANG Feng, HU Yu-zhao, WANG Xue-kun, REN Tao, QIU Wen-long, ZHONG Kang-hui. Metallogenic tectonic dynamics and chronology constrains on the Huize-Typ (HZT) germanium-rich silver-zinc-lead deposits [J]. Geotectonic et Metallogenia, 2014, 38(4): 758–771. DOI: https://doi.org/10.3969/j.issn.1001-1552.2014.04.003. (in Chinese)

    Google Scholar 

  46. DAI Zi-xi. The distributions, types and rules of exploration of lead and zinc all over the world [J]. World Nonferrous Metals, 2005(3): 15–23. (in Chinese)

  47. XIE Jia-rong. A discussion on the deposits classify [M]. Beijing, China: Science Press, 1963. (in Chinese)

    Google Scholar 

  48. TU Guang-zhi. Geochemical of strata bound ore deposits in China [M]. Beijing, China: Science Press, 1984. (in Chinese)

    Google Scholar 

  49. HAN Run-sheng, LIU Cong-qiang, HUANG Zhi-long, MA De-yun, LI Yuan, HU Bin. Sources of ore-forming fluid in huize Zn-Pb-(Ag-Ge) district, Yunnan, China [J]. Acta Geologica Sinica, 2004, 78(2): 583–591. DOI: https://doi.org/10.1111/j.1755-6724.2004.tb00170.x.

    Google Scholar 

  50. HUANG Zhi-long, CHEN Jin, HAN Run-sheng. Geochemistry and ore genesis of Huize super-large lead-zinc deposit, Yunnan Province, concurrently discuss the relationship between Emeishan basalt and lead-zinc deposits [M]. Beijing, China: Geological Publishing House, 2004. (in Chinese)

    Google Scholar 

  51. LIU He-chang, LIN Wen-da. Metallogenic rules of Zn-Pb-(Ag) deposits in Northeastern Yunnan [M]. Kunming, China: Yunnan University Publishing House, 1999. (in Chinese)

    Google Scholar 

  52. ZHANG Chang-qing. The genetic model of mississippi valley-type deposits in the boundary area of Sichuan, Yunnan and Guizhou Provinces, China [D]. Beijing, China: Chinese Academy of Geological Sciences, 2008: 67–98. (in Chinese)

    Google Scholar 

  53. ZHOU Jia-xi, LUO Kai, WANG Xuan-ce, WILDES A, WU TAO, HUAN Zhi-long, CUI Yin-liang, ZHAO Jian-xin. Ore genesis of the fule Pb-Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk C-O-S and in situ S-Pb isotopes [J]. Gondwana Research, 2018, 54: 161–179. DOI: https://doi.org/10.1016/j.gr.2017.11.004.

    Article  Google Scholar 

  54. ZHOU Jia-xi, XIANG Zhen-zhong, ZHOU Mei-fu, FENG Yue-xing, LUO Kai, HUANG Zhi-long, WU Tao. The giant Upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model [J]. Journal of Asian Earth Sciences, 2018, 154: 280–315. DOI: https://doi.org/10.1016/j.jseaes.2017.12.032.

    Article  Google Scholar 

  55. ZHOU Jia-xi, HUANG Zhi-long, ZHOU Mei-fu, ZHU Xiang-kun, PHILIPPE M. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, southwest China [J]. Ore Geology Reviews, 2014, 58(3): 41–54. DOI:https://doi.org/10.1016/j.oregeorev.2013.10.009.

    Article  Google Scholar 

  56. ZHOU Jia-Xi, HUANG Zhi-long, LV Zhi-cheng, ZHU Xiang-Kun, JIN Zhong-guo, HASSAN M. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China [J]. Ore Geology Reviews, 2014, 63(1): 209–225. DOI: https://doi.org/10.1016/j.oregeorev.2014.05.012.

    Article  Google Scholar 

  57. ZHOU Jia-xi, HUANG Zhi-long, ZHOU Mei-fu, LI Xiao-biao, JIN Zhong-guo. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China [J]. Ore Geology Reviews, 2013, 53: 77–92. DOI: https://doi.org/10.1016/j.oregeorev.2013.01.001.

    Article  Google Scholar 

  58. ZHOU Jia-xi, HUANG Zhi-long, BAO Guang-ping, GAO Jian-guo. Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China [J]. Journal of Earth Science, 2013, 24(5): 759–771. DOI: https://doi.org/10.1007/s12583-013-0372-8.

    Article  Google Scholar 

  59. ZHANG Yan, HAN Run-sheng, WEI Ping-tang, WANG Lei. Identification of two types of metallogenic fluids in the ultra-large Huize Pb-Zn Deposit, SW China [J]. Geofluids, 2017: 6345810. DOI: https://doi.org/10.1155/2017/6345810.

    Google Scholar 

  60. ZOU Hai-jun, HAN Run-sheng, HU Bin. New evidences of origin of metallogenic materials in the Maoping Pb-Zn ore deposit, Zhaotong, Yunnan, R-factor analysis results of trace elements in NE-extending fractural tectonited [J]. Geology and Prospecting, 2004, 40(5): 43–48. (in Chinese)

    Google Scholar 

  61. MARIE J S, KESLER S E. Iron-rich and iron-poor Mississippi Valley-Type mineralization, metaline district, Washington [J]. Econ Geol, 2000, 95(5): 1091–1106. DOI: https://doi.org/10.2113/gsecongeo.95.5.1091.

    Article  Google Scholar 

  62. SAVARD M M, CHI G, SAMI T, WILLIAMS-JONES A E, LEIGH K. Fluid inclusion and carbon, oxygen, and strontium isotope study of the Polaris Mississippi Valley-type Zn-Pb deposit, Canadian Arctic Archipelago: Implications for ore genesis [J]. Mineralium Deposita, 2000, 35(6): 495–510. DOI: https://doi.org/10.1007/s001260050257.

    Article  Google Scholar 

  63. GRANDIA F, CANALS A, CARDELLACH E, BANKS D A, PERONA J. Origin of ore-forming brines in sedimenthosted Zn-Pb deposits of the Basque-Cantabrian Basin, Northern Spain [J]. Econ Geol, 2003, 98(7): 1397–1411. DOI: https://doi.org/10.2113/gsecongeo.98.7.1397.

    Article  Google Scholar 

  64. HAN Run-sheng, LI Bo, NI Pei, QIU Wen-long, WANG Xu-dong, WANG Tian-gang. Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of the Huize super-large Zn-Pb-(Ge-Ag) deposit, Yunnan Province [J]. Journal of Jilin University: Earth Science Edition, 2016, 46(1): 91–104. DOI: https://doi.org/10.13278/j.cnki.jjuese.201601109. (in Chinese)

    Google Scholar 

  65. ZHANG Yan, HAN Run-sheng, WEI Ping-tang, QIU Wen-long. Fluid Inclusion Features and physical and chemical conditions of the ore-forming fluid in Kuangshanchang Pb-Zn Deposit, Huize, Yunnan [J]. Journal of Jilin University: Earth Science Edition, 2017, 2017, 47(3): 719–733. DOI: https://doi.org/10.13278/j.cnki.jjuese.201703107. (in Chinese)

    Google Scholar 

  66. LIN Zhuan-xian, BAI Zheng-hai, ZHANG Zhe-ru. The thermodynamic manual book of minerals and related compounds [M]. Beijing, China: Science Press, 1985. (in Chinese)

    Google Scholar 

  67. LARGE R R, BULL S W, MCGOLDRICK P J, WALTERS S G. Stratiform and strata-bound Zn-Pb-Ag deposits in Proterozoic Sedimentary Basins, Northern Australia [C]//Economic Geology, 2005, 100th Anniversary Volume: 931–963. http://www.segweb.org/journal.htm.

  68. ZHANG Cheng-shuai, WANG En-de, SONG Jian-chao, QI Hong-yan, LI Peng-fei. Zonation of the Skarn-type of polymetal deposit in Huanren, Liaoning province [J]. Geology & Resources, 2009, 18(1): 23–26. DOI: https://doi.org/10.13686/j.cnki.dzyzy.2009.01.008. (in Chinese)

    Google Scholar 

  69. LU Wen-ju, KONG Xiang-chao, LAN Xin-jie, ZHANG Li-jun, LIAN Shu-ting, XIN Wei. Geochemical metallogenic mechanism of the deep Xiangkuang Deposit in the Qixia Area of Shandong Province [J]. Geology & Exploration, 2016, 31(2): 89–96. DOI: https://doi.org/10.13712/j.cnki.dzykt.2016.06.010. (in Chinese)

    Google Scholar 

  70. ZHAO Guo-bin, YANG He-qun, REN Hua-ning, XIE Xie, JIA Jian. Discussion on some problems about baiyinchang copper-polymetallic orefield in north Qilian [J]. Acta Geologica Sinica, 2016, 90(10): 2863–2873. (in Chinese)

    Google Scholar 

  71. SONG Zhi-gao. The environments of formation of the Baiyinchang massive sulfide deposit and the implication of its origin [J]. Geological Review, 1982, 28(4): 335–343. DOI: https://doi.org/10.16509/j.georeview.1982.04.006. (in Chinese)

    Google Scholar 

  72. ZHENG Yi, ZHANG Li, CHEN Yan-jing, HOLLINGS P, CHEN Hua-yong. Metamorphosed Pb-Zn-(Ag) ores of the Keketale VMS deposit, Xinjiang: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions [J]. Ore Geology Reviews, 2013, 54: 167–180. DOI: https://doi.org/10.1016/j.oregeorev.2013.03.009

    Article  Google Scholar 

  73. ZHENG Yi, ZHANG Li, GUO Zhen-lin. The zircon LA-ICP-MS U-Pb and biotite 40Ar/39Ar geochronology, and implications for genesis of the Tiemuert Pb-Zn-Cu deposit, Xinjiang [J]. Acta Petrologica Sinica, 2013, 29(1): 191–204.

    Google Scholar 

  74. ZHENG Yi, ZHANG Li, LI Deng-feng, ARGYRIOS K, CHEN Yan-jing. Genesis of the Dadonggou Pb-Zn deposit in Kelan basin, Altay, NW China: Constraints from zircon U-Pb and biotite 40Ar/39Ar geochronological data. Ore Geology Reviews, 2015, 64: 128–139. DOI: https://doi.org/10.1016/j.oregeorev.2014.07.002.

    Article  Google Scholar 

  75. SUBIAS P L, LÓPEZ C A, FANLO G I, FERNÁNDEZ N C. La mineralization de Pb-An-Cu-Ag de Valdeplata (Calcena, Zaragoza) [J]. Boletín De La Sociedad Española De Mineralogía, 1994, 17: 95–102.

    Google Scholar 

  76. BARRIE C T, HANNINGTON M D. Volcanic-associated massive sulfide deposits: Pocesses and examples in modern and ancient settings [J]. Society of Economic Geologists, 1999, 8: 325–356.

    Google Scholar 

  77. SUBÍAS I, FANLO I, MATEO E, BILLSTR M K, RECIO C. Isotopic studies of Pb-Zn-(Ag) and barite Alpine vein deposits in the Iberian Range (NE Spain) [J]. Chemie der Erde-Geochemistry, 2010, 70(2): 149–158. DOI: https://doi.org/10.1016/j.chemer.2009.12.004.

    Article  Google Scholar 

  78. YE Qing-tong. A preliminary study on hypogene zoning of the Yinshan copper-lead-zinc deposit [J]. Geological Review, 1981, 3(2): 199–206. (in Chinese)

    Google Scholar 

  79. WANG Guo-guang, NI Pei, ZHAO Kui-dong, LIU Jia-run, XIE Guo-ai, XU Ji-hun, ZHANG Zhi-hui. Comparison of fluid inclusions in coexisting sphalerite and quartz from Yinshan deposit, Dexing, Northeast Jiangxi Province [J]. Acta Petrologica Sinica, 2011, 27(5): 1387–1396. (in Chinese)

    Google Scholar 

  80. ROEDDER E. Temperature, salinity, and origin of the ore-forming fluids at Pine Point, Northwest Territories, Canada, from fluid inclusion studies [J]. Economic Geology, 1968, 63(5): 439–450.

    Article  Google Scholar 

  81. RHODES D, LANTOS E A, LANTOS J A, WEBB R J, OWENS D C. Pine Point orebodies and their relationship to the stratigraphy, structure, dolomitization, and karstification of the Middle Devonian barrier complex [J]. Economic Geology, 1984, 79(5): 991–1055. DOI: https://doi.org/10.2113/gsecongeo.79.5.991.

    Article  Google Scholar 

  82. HANNIGAN P, GOODFELLOW W. Metallogeny of the Pine Point Mississippi Valley-type zinc-lead district, southern Northwest territories. Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods [M]// W D GOODFELLOW Edited. Geological Association of Canada, Mineral Deposits Division, 2007, 5: 609–632.

    Google Scholar 

  83. ASHTON J H, DOWNING D T, FINLAY S. The geology of the Navan Zn-Pb orebody [M]// ANDREW C J, CROWE R W A, FINLAY S, PENNEL W M, PYNE J F. Geology And Genesis Of Mineral Deposits in Ireland, Dublin. Irish Association for Economic Geology, 1986: 243–280.

  84. ASHTON J. The Navan carbonate-hosted Zn-Pb deposit, Ireland [J]. Ore Geology Reviews, 2005, 27(1–4): 270.

    Article  Google Scholar 

  85. LI Deng-feng, CHEN Hua-yong, ZHANG Li, HOLLINGS P, CHEN Yan-jing, LU Wan-jian, ZHENG Yi, WANG Cheng-ming, FANG Jing, CHEN Gang, ZHOU Gang. Ore geology and fluid evolution of the giant Caixiashan carbonate-hosted Zn-Pb deposit in the Eastern Tianshan, NW China [J]. Ore Geology Reviews, 2015, 72: 355–372. DOI: https://doi.org/10.1016/j.oregeorev.2015.08.007.

    Article  Google Scholar 

  86. LU Wan-jian, ZHANG Li, CHEN Hua-yong, HAN Jin-sheng, JIANG Hong-jun, LI Deng-feng, FANG Jing, WANG Cheng-ming, ZHENG Yi, TAN Zhi-xiong. Geology, fluid inclusion and isotope geochemistry of the Hongyuan reworked sediment-hosted Zn-Pb deposit: Metallogenic implications for Zn-Pb deposits in the Eastern Tianshan, NW China [J]. Ore Geology Reviews, 2018, 100: 504–533. DOI: https://doi.org/10.1016/j.oregeorev.2017.01.004.

    Article  Google Scholar 

  87. LIU Wen-jun, ZHENG Rong-cai, LI Yuan-lin, CHANG Si-he. Research of the daughter minerals in fluid inclusions of the Huayuan lead and zinc deposit [J]. Journal of Chengdu University of Technology, 1997(4): 65–69. (in Chinese)

  88. HAN Run-sheng, ZOU Hai-jun, HU Bin, HU Yu-zhao, XUE Chuan-dong. Features of fluid inclusions and sources of Ore-forming fluid in the Maoping Carbonate-hosted Zn-Pb-(Ag-Ge) Deposit, Yunnan, China [J]. Acta Petrological Sinica, 2007, 23(9): 2109–2118. (in Chinese)

    Google Scholar 

  89. QIU Wen-long. Fluid geochemistry of the Zhaotong Pb-Zn deposit in Yunnan [D]. Kunming: Kunming University of Science and Technology, 2013. (in Chinese)

    Google Scholar 

  90. SI Rong-jun, GU Xue-xiang, XIIE Liang-xian, ZHANG Na. Geological characteristics of the Fule polymetallic deposit in Yunnan Province: A Pb-Zn deposit with dispersed elements and unusual enrichment [J]. Geology & Exploration, 2013, 49(2): 313–322. (in Chinese)

    Google Scholar 

  91. LV Yu-hui, HAN Run-sheng, REN Tao, QIU Wen-long, HAO Rang, GAO Yuan. Ore-controlling characteristics of fault structures and their relations to mineralization at Fulechang Zn-Pb Mining District in deposit concentration district of Northeastern Yunnan, China [J]. Geoscience, 2015, 29(3): 563–575. (in Chinese)

    Google Scholar 

  92. ZHOU Jia-xi, HUANG Zhi-long, YAN Zai-fei. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age [J]. Journal of Asian Earth Sciences, 2013, 73(5): 39–47. DOI: https://doi.org/10.1016/j.jseaes.2013.04.031.

    Article  Google Scholar 

  93. PLUMB K A, AHMAD M, WYGRALAK A S. Mid-Proterozoic basins of the North Australian Craton- regional geology and mineralisation [J]. Australasian Institute of Mining and Metallurgy Monograph, 1998, 22: 881–902.

    Google Scholar 

  94. LOGAN R G, MURRAY W J, WILLIAMS N. HYC silver-lead-zinc deposit, McArthur river [J]. Australasian Institute of Mining and Metallurgy Monograph, 1990, 14: 907–911.

    Google Scholar 

  95. KELLEY K D, LEACH D L, JOHNSON C A, CLARK J L, FAYEK M, AYUSO R A. Textural, compositional, and sulfur isotope variations of sulfide minerals in the red dog Zn-Pb-Ag deposits, brooks range, alaska: Implications for ore formation [J]. Economic Geology, 2004, 99(7): 1509–1532. DOI: https://doi.org/10.2113/gsecongeo.99.7.1509.

    Article  Google Scholar 

  96. LEACH D L, MARSH E, EMSBO P, ROMBACH C S, KELLEY K D, ANTHONY M. Nature of Hydrothermal Fluids at the Shale-Hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska [J]. Economic Geology, 2004, 99(7): 1449–1480. DOI: https://doi.org/10.2113/gsecongeo.99.7.1449.

    Article  Google Scholar 

  97. MA Guo-liang, BEAUDOIN Georges, QI Si-jing, LI Ying. Geology and geochemistry of the Changba SEDEX Pb-Zn deposit, Qinling orogenic belt, China [J]. Mineralium Deposita, 2004, 39(3): 380–395. DOI: https://doi.org/10.1007/s00126-004-0416-1. (in Chinese)

    Article  Google Scholar 

  98. MA Guo-liang, BEAUDOIN Georges, ZHONG Shao-jun, LI Ying, ZENG Zhang-ren. Geology and geochemistry of the Dengjiashan Zn-Pb SEDEX deposit, Qinling Belt, China [J]. Canadian Journal of Earth Sciences, 2007, 44(4): 479–492. DOI: https://doi.org/10.1139/e06-093.

    Article  Google Scholar 

  99. CALUGARU I L, NECULITA C M, GENTY T, BUSSIÈRE B, POTVIN R. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage [J]. Journal of Hazardous Materials, 2016, 310: 48. DOI: https://doi.org/10.1016/j.jhazmat.2016.01.069.

    Article  Google Scholar 

  100. MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings —Old and new insights [J]. Sedimentary Geology, 2001, 140(1, 2): 143–175. DOI: https://doi.org/10.1016/S0037-0738(00)00176-7.

    Article  Google Scholar 

  101. JACQUEMYN C, DESOUKY H E, HUNT D, CASINI G, SWENNEN R. Dolomitization of the Latemar platform: Fluid flow and dolomite evolution [J]. Marine & Petroleum Geology, 2014, 55: 43–67. DOI: https://doi.org/10.1016/j.marpetgeo.2014.01.017.

    Article  Google Scholar 

  102. MONTESHERNANDEZ G, FINDLING N, RENARD F, AUZENDE A L. Precipitation of ordered dolomite via simultaneous dissolution of calcite and Magnesite: New experimental insights into an old precipitation enigma [J]. Crystal Growth & Design, 2014, 14(14): 671–677. DOI: https://doi.org/10.1021/cg401548a.

    Article  Google Scholar 

  103. MONTES-HERNANDEZ G, FINDLING N, RENARD F. Dissolution-precipitation reactions controlling fast formation of dolomite under hydrothermal conditions [J]. Applied Geochemistry, 2016, 73: 169–177. DOI: https://doi.org/10.1016/j.apgeochem.2016.08.011.

    Article  Google Scholar 

  104. WEN De-xiao, HAN Run-sheng, WANG Feng, HE Jiao-jiao, QIU Wen-long, XIA Yan-le, CHEN Sui-hai, NI Er-jian. Features and formation mechanism of HTD dolomites in the Huize lead-zinc deposit, Yunnan Province [J]. Acta Petrologica et Mineralogica, 2014, 33(6): 1086–1098. DOI: https://doi.org/10.3969/j.issn.1000-6524.2014.06.007. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-sheng Han  (韩润生).

Additional information

Foundation item: Projects(41572060, 41802089, U1133602) supported by the National Natural Science Foundation of China; Project(2017M610614) supported by the Postdoctoral Science Foundation, China; Projects(2008, 2012) supported by the YM Lab [2011] and Innovation Team of Yunnan Province and KMUST, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, Rs. & Wei, Pt. Order of sphalerite and galena precipitation: A case study from lead-zinc deposits in southwest China. J. Cent. South Univ. 27, 288–310 (2020). https://doi.org/10.1007/s11771-020-4296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4296-z

Key words

关键词

Navigation