Skip to main content
Log in

Stress relaxation behavior and life prediction of gasket materials used in proton exchange membrane fuel cells

质子交换膜燃料电池密封材料应力松弛行为研究及寿命预测

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubber samples is studied under different temperatures and simulated operating conditions. The results show that the stress relaxes exponentially with time at 25% strain level, especially at higher temperature or with higher acid concentration solution. The three-term Prony series can simulate the viscoelastic behavior well, and the Master curves are established by applying a time-temperature superposition method to estimate the life of the samples. It can save approximately 50% and 78% of the test time when an operating temperature and acid solution are chosen appropriately.

摘要

硅橡胶材料在燃料电池中主要用于保持燃料气体与氧化气体在各自区域不因泄露而混合。由于 硅橡胶兼具黏性与弹性性质,在燃料电池中由于密封而处于压缩状态,所以预测力会随着时间的延长 而产生松弛。本论文针对硅橡胶试样在不同温度及不同模拟操作工况下的压缩应力松弛行为进行了研 究。结果表明,在25%应变状态下,材料的应力松弛行为随着时间的延长而呈指数下降趋势,特别是 当试样在温度较高或酸度较高的试验环境下老化之后。文中采用三参数Prony级数很好地模拟了硅橡 胶材料的黏弹性行为,并且基于时温等效原理构建主曲线预测试样寿命。当加速试验时老化温度与酸 浓度选择合适,相对于垫片材料在实际燃料电池环境中老化的力学损伤性能变化,可缩短50%甚至 78%老化时间。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIA Y, QI Z, YOU H. Power production enhancement with polyaniline composite anode in benthic microbial fuel cells [J]. Journal of Central South University, 2018, 25(3): 499–505.

    Article  Google Scholar 

  2. LIU G, E J, LIU T, WEI Z, ZHANG Q. Effects of different poses and wind speeds on flow field of dish solar concentrator based on virtual wind tunnel experiment with constant wind [J]. Journal of Central South University, 2018, 25(8): 1948–1957.

    Article  Google Scholar 

  3. CUI T, CHAO Y J, CHEN X M, van ZEE J W. Effect of water on life prediction of liquid silicone rubber seals in polymer electrolyte membrane fuel cell [J]. Journal of Power Sources, 2011, 196(22): 9536–9543.

    Article  Google Scholar 

  4. CUI T, CHAO Y J, van ZEE J W. Stress relaxation behavior of EPDM seals in polymer electrolyte membrane fuel cell environment [J]. International Journal of Hydrogen Energy, 2012, 37(18): 13478–13483.

    Article  Google Scholar 

  5. WAN Z, LIANG D, LU L, TANG Y. Fabrication of micro-flow channels on graphite composite bipolar plates using microplanning [J]. Journal of Central South University, 2015, 22(8): 2963–2970.

    Article  Google Scholar 

  6. HUSAR A, SERRA M, KUNUSCH C. Description of gasket failure in a 7 cell PEMFC stack [J]. Journal of Power Sources, 2007, 169(1): 85–91.

    Article  Google Scholar 

  7. ISHIKAWA H, TERAMOTO T, UEYAMA Y, SUGAWARA Y, UCHIDA M. Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling [J]. Journal of Power Sources, 2016, 325: 35–41.

    Article  Google Scholar 

  8. SCHULZE M, KNÖRI T, SCHNEIDER A, GÜLZOW E. Degradation of sealings for PEFC test cells during fuel cell operation [J]. Journal of Power Sources, 2004, 127(1, 2): 222–229.

    Article  Google Scholar 

  9. SRIDHAR R L, KRISHNAN R. PEMFC membrane electrode assembly degradation study based on its mechanical properties [J]. International Journal of Materials Research, 2013, 104(9): 892–898.

    Article  Google Scholar 

  10. LI G, TAN J Z, GONG J M. Chemical aging of the silicone rubber in a simulated and three accelerated proton exchange membrane fuel cell environments [J]. Journal of Power Sources, 2012, 217: 175–183.

    Article  Google Scholar 

  11. LI G, TAN J Z, GONG J M. Degradation of the elastomeric gasket material in a simulated and four accelerated proton exchange membrane fuel cell environments [J]. Journal of Power Sources, 2012, 217: 244–251.

    Google Scholar 

  12. LI G, TAN J Z, GONG J M, JIA W H. Degradation mechanism of the silicone rubber in simulated PEM fuel cell environments [J]. Journal of Chemical Industry and Engineering (China), 2014, 65(9): 3669–3675. (in Chinese)

    Google Scholar 

  13. RAJAGOPAL K R. A note on novel generalizations of the Maxwell fluid model [J]. International Journal of Non-Linear Mechanics, 2012, 47(1): 72–76.

    Article  Google Scholar 

  14. ZHOU L Q, MELESHKO S V. Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials [J]. International Journal of Non-Linear Mechanics, 2015, 77: 223–231.

    Article  Google Scholar 

  15. KONTOU E, SPATHIS G, GEORGIOPOULOS P. Modeling of nonlinear viscoelasticity-viscoplasticity of bio-based polymer composites [J]. Polymer Degradation and Stability, 2014, 110: 203–207.

    Article  Google Scholar 

  16. da ROCHA E B D, LINHARES F N, GABRIEL C F S, de SOUSA A M F, FURTADO C R G.. Stress relaxation of nitrile rubber composites filled with a hybrid metakaolin/carbon black filler under tensile and compressive forces [J]. Applied Clay Science, 2018, 151: 181–188.

    Article  Google Scholar 

  17. ZENG Q, ZHAO X. Time-dependent testing evaluation and modeling for rubber stopper seal performance [J]. PDA Journal of Pharmaceutical Science and Technology, 2018, 72: 134–148.

    Article  Google Scholar 

  18. MAZERAN P E, BEYAOUI M, BIGERELLE M, GUIGON M. Determination of mechanical properties by nanoindentation in the case of viscous materials [J]. International Journal of Materials Research, 2012, 103(6): 715–722.

    Article  Google Scholar 

  19. CAI W, CHEN W, XU W. Characterizing the creep of viscoelastic materials by fractal derivative models [J]. International Journal of Non-Linear Mechanics, 2016, 87: 58–63.

    Article  Google Scholar 

  20. MENG L, WU M. Study on stress relaxation of membrane structures in the prestress state by considering viscoelastic properties of coated fabric [J]. Thin Walled Structure, 2016, 106: 18–27.

    Article  Google Scholar 

  21. REY T, CHAGNON G, LE CAM J B, FAVIER D. Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers [J]. Polymer Test, 2013, 32(3): 492–501.

    Article  Google Scholar 

  22. YAMAGUCHI K, THOMAS A G, BUSFIELD J J C. Stress relaxation, creep and set recovery of elastomers [J]. International Journal of Non-Linear Mechanics, 2015, 68: 66–70.

    Article  Google Scholar 

  23. SHI C, CAO C, LEI M, PENG L, SHEN J. Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints [J]. Tunnelling and Underground Space Technology, 2015, 50: 490–498.

    Article  Google Scholar 

  24. KÖMMLING A, JAUNICH M, WOLFF D. Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals [J]. Polymer Degradation and Stability, 2016, 126: 39–46.

    Article  Google Scholar 

  25. VAIDYANATHAN T K, VAIDYANATHAN J. Validity of predictive models of stress relaxation in selected dental polymers [J]. Dental Materials, 2015, 31(7): 799–806.

    Article  Google Scholar 

  26. YOON S, SIVIOUR C R. Application of the Virtual Fields Method to a relaxation behaviour of rubbers [J]. Journal of the Mechanics and Physics of Solids, 2018, 116: 416–431.

    Article  Google Scholar 

  27. LORENZ B, PYCKHOUT-HINTZEN W, PERSSON B N J. Master curve of viscoelastic solid: Using causality to determine the optimal shifting procedure, and to test the accuracy of measured data [J]. Polymer, 2014, 55(2): 565–571.

    Article  Google Scholar 

  28. ASCHENBRENNER M, KULOZIK U, FOERST P. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model [J]. Cryobiology, 2012, 65(3): 308–318.

    Article  Google Scholar 

  29. BRIODY C, DUIGNAN B, JERRAMS S, RONAN S. Prediction of compressive creep behaviour in flexible polyurethane foam over long time scales and at elevated temperatures [J]. Polymer Test, 2012, 31(8): 1019–1025.

    Article  Google Scholar 

  30. BRIODY C, DUIGNAN B, JERRAMS S, TIERNAN J. The implementation of a visco-hyperelastic numerical material model for simulating the behaviour of polymer foam materials [J]. Computational Materials Science, 2012, 64: 47–51.

    Article  Google Scholar 

  31. MARIA H J, LYCZKO N, NZIHOU A, JOSEPH K, MATHEW C, THOMAS S. Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites [J]. Applied Clay Science, 2014, 87: 120–128.

    Article  Google Scholar 

  32. SCLARSKY E, KADLOWEC J, VERNENGO A J. Modeling stress relaxation of crosslinked polymer networks for biomaterials applications: A distance learning module [J]. Education for Chemical Engineers, 2016, 17: 14–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Li  (李果).

Additional information

Foundation item: Projects(51505212, 51505211, 11302097) supported by the National Natural Science Foundation of China; Project(XTCX201609) supported by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology, China; Project(1301060B) supported by the Postdoctoral Science Foundation of Jiangsu Province, China; Project(11KJD130001) supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions, China; Project(ZKJ201401) supported by the on-job Doctorate Foundation of Nanjing Institute of Technology, China; Project(JXKJ201511) supported by the Open Projects about Key Discipline in 2015, School of Mechanical Engineering, Nanjing Institute of Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Gong, Jm., Tan, Jz. et al. Stress relaxation behavior and life prediction of gasket materials used in proton exchange membrane fuel cells. J. Cent. South Univ. 26, 623–631 (2019). https://doi.org/10.1007/s11771-019-4033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4033-7

Key words

关键词

Navigation