Skip to main content

Advertisement

Log in

Carbon black/ethylene propylene diene monomer (EPDM) rubber as polymer electrolyte membrane fuel cell gaskets: mechanical and chemical assessment

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In proton electrolyte membrane fuel cells (PEMFCs), elastomeric gaskets are utilized to separate the reactant gases from each other and hamper the leakage of gases/liquids from the specified perimeter. To ensure long-term performance of gaskets, it is necessary to design and manufacture high-performance, long-lasting sealing materials. In this study, PEMFC gaskets with high hardness and low compression set values were designed by incorporation of different carbon black (CB) contents in ethylene propylene diene monomer (EPDM). The fuel cell environment was simulated by an accelerated durability test (ADT) method, and the mechanical and chemical characteristics of the gasket such as hardness, tensile properties, compression set, crosslink density, and weight change were examined before and after 400 and 800 h of exposure to an acidic solution. As a result of the incorporation of CB, the gaskets’ mechanical properties were significantly enhanced, with a hardness increase from 51 to 72 and tensile strength rise from 2.51 to 34.8 MPa after increasing the CB content from 0 to 60 phr. Despite that, incorporating CB has also caused a negative effect on gaskets’ properties by increasing the compression set value from 2.75 to 9%. The gasket containing 20 phr carbon black content possessed more balanced mechanical properties and performance than the other gaskets (hardness of 63, a compression set of 2.95%, and a tensile strength of 11.3 MPa). In addition, the aging test results revealed that the aging process has altered the mechanical properties of gaskets due to the chain scission and crosslinking/de-crosslinking of rubbers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abe JO, Popoola API, Ajenifuja E, Popoola OM (2019) Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy 44:15072–15086

    Article  CAS  Google Scholar 

  2. Bagherzadeh A, Tohidian M, Mollamohammadi Sadafi Y, Shamsabadi A, Makki H (2023) Polyelectrolyte membranes based on Nafion/chitosan blends for direct methanol fuel cell application. J Electrochem Soc 170:084504

    Article  Google Scholar 

  3. Mehdipour-Ataei S (2022) Polymers and clean energy. Iran Polym J 31:5–6

    Article  CAS  Google Scholar 

  4. Qiu D, Liang P, Peng L, Yi P, Lai X, Ni J (2020) Material behavior of rubber sealing for proton exchange membrane fuel cells. Int J Hydrogen Energy 45:5465–5473

    Article  CAS  Google Scholar 

  5. Xu W, Zhang X (2023) Chemical aging of sealing gasket of proton exchange membrane fuel cell. Fuel Cells 2023:181–187

    Article  Google Scholar 

  6. Dillard DA, Guo S, Ellis MW, Lesko JJ, Dillard JG, Sayre J, Vijayendran B (2004) Seals and sealants in PEM fuel cell environments: material, design, and durability challenges. Fuel Cell Sci Eng Technol 2004:553–560

    Google Scholar 

  7. Nah C, Kim SG, Shibulal GS, Yoo YH, Mensah B, Jeong BH, Hong BK, Ahn JH (2015) Effects of curing systems on the mechanical and chemical ageing resistance properties of gasket compounds based on ethylene-propylene-diene-termonomer rubber in a simulated fuel cell environment. Int J Hydrogen Energy 40:10627–10635

    Article  CAS  Google Scholar 

  8. Habieb AB, Milani F, Milani G, Cerchiaro R (2020) Rubber compounds made of reactivated EPDM for fiber-reinforced elastomeric isolators: an experimental study. Iran Polym J 29:1031–1043

    Article  CAS  Google Scholar 

  9. Wang Z, Tan J, Wang Y, Liu Z, Feng Q (2019) Chemical and mechanical degradation of silicone rubber under two compression loads in simulated proton-exchange membrane fuel-cell environments. J Appl Polym Sci 136:47855

    Article  Google Scholar 

  10. Shi D, Cai L, Zhang C, Chen D, Pan Z, Kang Z, Liu Y, Zhang J (2023) Fabrication methods, structure design and durability analysis of advanced sealing materials in proton exchange membrane fuel cells. Chem Eng J 454:139995

    Article  CAS  Google Scholar 

  11. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119

    Article  CAS  Google Scholar 

  12. Hou Q, Yin L, Xu L, Tan J (2022) Effects of composite reinforcing filler, vulcanizing temperature, and pressure on mechanical properties of gasket material for proton exchange membrane fuel cells. J Appl Polym Sci 139:52298

    Article  CAS  Google Scholar 

  13. Fan Y, Fowler GD, Zhao M (2020) The past, present and future of carbon black as a rubber reinforcing filler: a review. J Clean Prod 247:119115

    Article  CAS  Google Scholar 

  14. Fröhlich J, Niedermeier W, Luginsland HD (2005) The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A Appl Sci Manuf 36:449–460

    Article  Google Scholar 

  15. Barghamadi M, Karrabi M, Ghoreishy MHR, Naderi G (2023) Effect of TESPT on viscoelastic and mechanical properties with the morphology of SSBR/BR hybrid nanocomposites. J Appl Polym Sci 140:1–16

    Article  Google Scholar 

  16. Ostad Movahed S, Ansarifar A, Mirzaie F (2015) Effect of various efficient vulcanization cure systems on the compression set of a nitrile rubber filled with different fillers. J Appl Polym Sci 132:1–10

    Google Scholar 

  17. Mostafa A, Abouel-Kasem A, Bayoumi MR, El-Sebaie MG (2009) Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds. Mater Des 30:1561–1568

    Article  CAS  Google Scholar 

  18. Manoj KC, Kumari P, Unnikrishnan G (2011) Cure characteristics, swelling behaviors, and mechanical properties of carbon black filler reinforced EPDM/NBR blend system. J Appl Polym Sci 120:2654–2662

    Article  CAS  Google Scholar 

  19. Alzamil MA, Alfaramawi K, Abboudy S, Abulnasr L (2018) Temperature coefficients of electrical conductivity and conduction mechanisms in butyl rubber-carbon black composites. J Electron Mater 47:1665–1672

    Article  CAS  Google Scholar 

  20. Azura AR, Ghazali S, Mariatti M (2008) Effects of the filler loading and aging time on the mechanical and electrical conductivity properties of carbon black filled natural rubber. J Appl Polym Sci 110:747–752

    Article  CAS  Google Scholar 

  21. Liu Q, Li J, Jiang Y, Cong C, Xu L, Zhang Y, Meng X, Zhou Q (2021) Effect of crosslinked structure on the chemical degradation of EPDM rubber in an acidic environment. Polym Degrad Stab 185:109475

    Article  CAS  Google Scholar 

  22. Lin CW, Chien CH, Tan J, Chao YJ, Van Zee JW (2011) Dynamic mechanical characteristics of five elastomeric gasket materials aged in a simulated and an accelerated PEM fuel cell environment. Int J Hydrogen Energy 36:6756–6767

    Article  CAS  Google Scholar 

  23. Wu F, Chen B, Yan Y, Chen Y, Pan M (2018) Degradation of silicone rubbers as sealing materials for proton exchange membrane fuel cells under temperature cycling. Polymers 10:522

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tan J, Chao YJ, Wang H, Gong J, Van Zee JW (2009) Chemical and mechanical stability of EPDM in a PEM fuel cell environment. Polym Degrad Stab 94:2072–2078

    Article  CAS  Google Scholar 

  25. Li C, Ding Y, Yang Z, Yuan Z, Ye L (2020) Compressive stress-thermo oxidative ageing behaviour and mechanism of EPDM rubber gaskets for sealing resilience assessment. Polym Test 84:106366

    Article  CAS  Google Scholar 

  26. Li ZH, Zhang J, Chen SJ (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polym Lett 2:695–704

    Article  CAS  Google Scholar 

  27. Von Burg JAC, Hagerop van Eijs FG (2013) The science and technology of rubber (4th edn). Sci Technol Rubber

    Article  Google Scholar 

  28. Flory PJ, Rehner J (1943) Statistical mechanics of crosslinked polymer networks II: swelling. J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  29. Stelescu M, Airinei A, Manaila E, Craciun G, Fifere N, Varganici C, Pamfil D, Doroftei F (2018) Effects of electron beam irradiation on the mechanical, thermal, and surface properties of some EPDM/butyl rubber composites. Polymers 10:1206

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kraus G (1963) Swelling of filler-reinforced. J Appl Polym Sci 7:861–871

    Article  CAS  Google Scholar 

  31. Kwak SB, Choi NS (2011) Thermo-oxidative degradation of a carbon black compounded EPDM rubber hose. Int J Automot Technol 12:401–408

    Article  Google Scholar 

  32. Lee YS, Park SH, Lee JC, Ha K (2016) Influence of microstructure in nitrile polymer on curing characteristics and mechanical properties of carbon black-filled rubber composite for seal applications. J Elastomers Plast 48:659–676

    Article  CAS  Google Scholar 

  33. Tan J, Chao YJ, Li X, Van Zee JW (2007) Degradation of silicone rubber under compression in a simulated PEM fuel cell environment. J Power Sources 172:782–789

    Article  CAS  Google Scholar 

  34. Kim MS, Kim JH, Kim JK, Kim SJ (2007) Life time prediction of rubber gasket for fuel cell through its acid-aging characteristics. Macromol Res 15:315–323

    Article  CAS  Google Scholar 

  35. Arab K, Tohidian M, Shamsabadi A (2023) Nanocomposite proton conducting membranes based on sulfonated polystyrene/imidazole-2-acetic acid blend for direct methanol fuel cell application. J Appl Polym Sci 2023:e54606

    Article  Google Scholar 

  36. Trimble GK (1999) Rubber technology. J Chem Educ. 

    Article  Google Scholar 

  37. Dijkhuis KAJ, Noordermeer JWM, Dierkes WK (2009) The relationship between crosslink system, network structure and material properties of carbon black reinforced EPDM. Eur Polym J 45:3302–3312

    Article  CAS  Google Scholar 

  38. Le Hel C, Bounor-Legaré V, Lucas A, Thèvenon A, Cassagnau P (2021) Elasticity recovery of crosslinked EPDM: influence of the chemistry and nanofillers. Rheol Acta 60:1–10

    Article  Google Scholar 

  39. Heinrich G, Vilgis TA (1993) Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules 26:1109–1119

    Article  CAS  Google Scholar 

  40. Aprem AS, Joseph K, Thomas S (2005) Recent developments in crosslinking of elastomers. Rubber Chem Technol 78:458–488

    Article  CAS  Google Scholar 

  41. Yue Y, Zhang H, Zhang Z, Chen Y (2013) Polymer-filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber. Compos Sci Technol 86:1–8

    Article  CAS  Google Scholar 

  42. Wypych G (2016) Handbook of fillers, 4th edn. Elsevier

    Google Scholar 

  43. Sugama T, Pyatina T, Redline E, McElhanon J, Blankenship D (2015) Degradation of different elastomeric polymers in simulated geothermal environments at 300 °C. Polym Degrad Stab 120:328–339

    Article  CAS  Google Scholar 

  44. Gunasekaran S, Natarajan RK, Kala A (2007) FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc 68:323–330

    Article  CAS  Google Scholar 

  45. Mitra S, Ghanbari-Siahkali A, Kingshott P, Hvilsted S, Almdal K (2006) An investigation on changes in chemical properties of pure ethylene-propylene-diene rubber in aqueous acidic environments. Mater Chem Phys 98:248–255

    Article  CAS  Google Scholar 

  46. McDonnell D, Balfe N, O’Donnell GE (2018) Analysis of the effects of chemical ageing of ethylene-propylene diene monomer by chemical, spectroscopic, and thermal means. Polym Test 65:116–124

    Article  CAS  Google Scholar 

  47. Liu Q, Li J, Cong C, Cui H, Xu L, Zhang Y, Meng X, Zhou Q (2020) Thermal and thermo-oxidative degradation of tetrafluoroethylene-propylene elastomer above 300 °C. Polym Degrad Stab 177:109180

    Article  CAS  Google Scholar 

  48. Gamlin CD, Dutta NK, Choudhury NR (2003) Mechanism and kinetics of the isothermal thermodegradation of ethylene-propylene-diene (EPDM) elastomers. Polym Degrad Stab 80:525–531

    Article  CAS  Google Scholar 

  49. Rizwan M, Chandan MR (2022) Mechanistic insights into the ageing of EPDM micro/hybrid composites for high voltage insulation application. Polym Degrad Stab 204:110114

    Article  CAS  Google Scholar 

  50. Mitra S, Ghanbari-Siahkali A, Kingshott P, Rehmeier HK, Abildgaard H, Almdal K (2006) Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment: part II-effect of peroxide crosslinking in the presence of a coagent. Polym Degrad Stab 91:81–93

    Article  CAS  Google Scholar 

  51. Mitra S, Ghanbari-Siahkali A, Kingshott P, Rehmeier HK, Abildgaard H, Almdal K (2006) Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment: part I-effect on accelerated sulphur crosslinks. Polym Degrad Stab 91:69–80

    Article  CAS  Google Scholar 

  52. Alizadeh E, Barzegari MM, Momenifar M, Ghadimi M, Saadat SHM (2016) Investigation of contact pressure distribution over the active area of PEM fuel cell stack. Int J Hydrogen Energy 41:3062–3071

    Article  CAS  Google Scholar 

  53. Shen L, Xia L, Han T, Wu H, Guo S (2016) Improvement of hardness and compression set properties of EPDM seals with alternating multilayered structure for PEM fuel cells. Int J Hydrogen Energy 41:23164–23172

    Article  CAS  Google Scholar 

  54. Hamza SS (1998) Effect of aging and carbon black on the mechanical properties of EPDM rubber. Polym Test 17:131–137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Javad Hafezi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsabadi, A., Farahani, A., Shirkavand, M.M. et al. Carbon black/ethylene propylene diene monomer (EPDM) rubber as polymer electrolyte membrane fuel cell gaskets: mechanical and chemical assessment. Iran Polym J 33, 169–183 (2024). https://doi.org/10.1007/s13726-023-01239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01239-9

Keywords

Navigation