Skip to main content
Log in

Effects of single-walled carbon nanotubes on growth and physiological characteristics of Microcystis aeruginosa

单壁碳纳米管对铜绿微囊藻生长及生理特性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (>5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.

摘要

为了探索一种潜在新型的使用碳纳米管(CNTs)高效控制水华蓝藻的处理方法, 本研究调查 了在实验室条件下单壁碳纳米管(SWCNTs)对铜绿微囊藻(Microcystis aeruginosa)的生长及控制的影 响。相关生理变化检测包括重要的抗氧化酶, 如超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化 氢酶(CAT)、丙二醛(MDA), 有光合色素、蛋白、可溶性糖和胞外藻毒素(MC-LR)。藻细胞密度在高 浓度SWCNTs (>5.00 mg/L)处理时受到明显抑制, 抑制率具有浓度依赖性。当处理100 mg/L SWCNTs 时, 抑制率可达90%以上。96 h IC50 为22 mg/L。在高浓度SWCNTs 处理时, 抗氧化酶活性明显下 降, 脂质过氧化物上升, 表明胞内产生了活性氧自由基(ROS)和氧化胁迫伤害。光合色素、可溶性糖 和蛋白含量下降, 表明SWCNTs 可能摧毁了藻的光和系统, 细胞的相关代谢结构, 导致了Microcystis aeruginosa 糟糕的生理状态。此外, SWCNTs 还可以有效地降低培养基中的微囊藻毒素。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MICHALAK A M, ANDERSON E J, BELETSKY D, BOLAND S, BOSCH N S, BRIDGEMAN T B, CHAFFIN J D, CHO K, CONFESOR R, DALOĞ LU I, DEPINTO J V, EVANS M A, FAHNENSTIEL G L, HE LING-LI, HO J C, JENKINS L, JOHENGEN T H, KUO K C, LAPORTE E, LIU Xiao, MCWILLIAMS M R, MOORE M R, POSSELT D J, RICHARDS R P, SCAVIA D, STEINER A L, VERHAMME E, WRIGHT D M, ZAGORSKI M A. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 6448–6452.

    Article  Google Scholar 

  2. CAREY C C, IBELINGS B W, HOFFMANN E P, HAMILTON D P, BROOKES J D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate [J]. Water Research, 2012, 46: 1394–1407.

    Article  Google Scholar 

  3. HUMBERT J F, BARBE V, LATIFI A, GUGGER M, CALTEAU A, COURSIN T, LAJUS A, CASTELLI V, OZTAS S, SAMSON G. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa [J]. PLoS One, 2013, 8: e70747.

    Article  Google Scholar 

  4. REN Ying, PEI Hai, HU Wen, TIAN Chang, HAO Da, WEI Jie, FENG Ya. Spatiotemporal distribution pattern of cyanobacteria community and its relationship with the environmental factors in Hongze Lake, China [J]. Environmental Monitoring and Assessment, 2014, 186: 6919–6933.

    Article  Google Scholar 

  5. HU Liang, ZHOU Wei, YANG Jing, CHEN Jian, YIN Yu, SHI Zhi. Cinnamaldehyde induces PCD-like death of Microcystis aeruginosa via reactive oxygen species [J]. Water, Air, & Soil Pollution, 2011, 217: 105–113.

    Article  Google Scholar 

  6. BAUGHMAN R H, ZAKHIDOV A A, de HEER W A. Carbon nanotubes-the route toward applications [J]. Science, 2002, 297: 787–792.

    Article  Google Scholar 

  7. KHALKHALI A, KHAKSHOURNIA S, SABERI P. Optimal design of functionally graded PmPV/CNT nanocomposite cylindrical tube for purpose of torque transmission [J]. Journal of Central South University, 2016, 23(2): 362–369.

    Article  Google Scholar 

  8. KLAINE S J, ALVAREZ P J J, BATLEY G E, FERNANDES T F, HANDY R D, LYON D Y, MAHENDRA S, MCLAUGHLIN M J, LEAD J R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2008, 27: 1825–1851.

    Article  Google Scholar 

  9. GOTTSCHALK F, SONDERER T, SCHOLZ R W, NOWACK B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions [J]. Environmental Science & Technology, 2009, 43: 9216–9222.

    Article  Google Scholar 

  10. PETERSEN E J, ZHANG Li, MATTISON N T, O’ CARROLL D M, WHELTON A J, UDDIN N, NGUYEN T, HUANG Qing, HENRY T B, HOLBROOK R D. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes [J]. Environmental Science & Technology, 2011, 45: 9837–9856.

    Article  Google Scholar 

  11. ZHAO Xing, LIU Ru. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels [J]. Environment International, 2012, 40: 244–255.

    Article  Google Scholar 

  12. LONG Zhi, JI Jing, YANG Kun, LIN Dao, WU Fen. Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae [J]. Environmental Science & Technology, 2012, 46: 8458–8466.

    Article  Google Scholar 

  13. ZHANG Lu, LEI Cheng, CHEN Jia, YANG Kun, ZHU Li, LIN Dao. Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae [J]. Carbon, 2015, 83: 198–207.

    Article  Google Scholar 

  14. RHIEM S, RIDING M J, BAUMGARTNER W, MARTIN F L, SEMPLE K T, JONES K C, SCHÄ FFER A, MAES H M. Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells [J]. Environmental Pollution, 2015, 196: 431–439.

    Article  Google Scholar 

  15. MOU Feng, WANG Ping, LI Han, ZHOU Zhi. Growth inhibitions of four types of CNTs on Scenedesmus obliquus [J]. Journal of Convergence Information Technology, 2013, 8: 176–182.

    Google Scholar 

  16. SCHWAB F, BUCHELI T D, LUKHELE L P, MAGREZ A, NOWACK B, SIGG L, KNAUER K. Are carbon nanotube effects on green algae caused by shading and agglomeration? [J]. Environmental Science & Technology, 2011, 45: 6136–6144.

    Article  Google Scholar 

  17. JEFFREY S W, HUMPHREY G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton [J]. Biochem Physiol Pflanz, 1975, 167(2): 191–194.

    Article  Google Scholar 

  18. UENO Y, NAGATA S, TSUTSUMI T, HASEGAWA A, WATANABE M F, PARK H D, CHEN G C, CHEN G, YU S Z. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay [J]. Carcinogenesis, 1996, 17: 1317–1321.

    Article  Google Scholar 

  19. PARK M H, KIM K H, LEE H H, KIM J S, HWANG S J. Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa [J]. Biotechnology Letters, 2010, 32: 423–428.

    Article  Google Scholar 

  20. van HOECKE K, de SCHAMPHELAERE K A C, van DER MEEREN P, LCUCAS S, JANSSEN C R. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area [J]. Environmental Toxicology and Chemistry, 2008, 27: 1948–1957.

    Article  Google Scholar 

  21. CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief [J]. Nature, 2003, 421: 691–692.

    Article  Google Scholar 

  22. KANG S, HERZBERG M, RODRIGUES D F, ELIMELECH M. Antibacterial effects of carbon nanotubes: size does matter! [J]. Langmuir, 2008, 24: 6409–6413.

    Article  Google Scholar 

  23. NIELSEN H D, BERRY L S, STONE V, BURRIDGE T R, FERNANDES T F. Interactions between carbon black nanoparticles and the brown algae Fucus serratus: Inhibition of fertilization and zygotic development [J]. Nanotoxicology, 2008, 2: 88–97.

    Article  Google Scholar 

  24. WEI Li, THAKKAR M, CHEN Yu, NTIM S A, MITRA S, ZHANG Xue. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta [J]. Aquatic Toxicology, 2010, 100: 194–201.

    Article  Google Scholar 

  25. NEL A, XIA Tian, MÄDLER L, LI Ning. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311: 622–627.

    Article  Google Scholar 

  26. WANG Zhen, LI Jing, ZHAO Jian, XING Bao. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter [J]. Environmental Science & Technology, 2011, 45: 6032–6040.

    Article  Google Scholar 

  27. DI GIORGIO M L, DI BUCCHIANICO S, RAGNELLI A M, AIMOLA P, SANTUCCI S, POMA A. Effects of single and multi walled carbon nanotubes on macrophages: Cyto and genotoxicity and electron microscopy [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2011, 722: 20–31.

    Article  Google Scholar 

  28. GUO Hong, TIAN Yu, ZHANG Ye, WANG Huai. Adsorption of extracellular polymeric substances (EPS) of activated sludge onto single-walled nanotubes [J]. Anhui Chemical Industry, 2012(4): 12. (in Chinese)

    Google Scholar 

  29. ZHANG Shan, ZHANG Hui, QIN Rong, JIANG Wu, LIU Dong. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L [J]. Ecotoxicology, 2009, 18: 814–823.

    Article  Google Scholar 

  30. QIAN Hai, XU Xiao, CHEN Wei, JIANG Hong, JIN Yuan, LIU Wei, FU Zheng. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris [J]. Chemosphere, 2009, 75: 368–375.

    Article  Google Scholar 

  31. LI Yong, ZHANG Shan, JIANG Wu, LIU Dong. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L [J]. Environmental Science and Pollution Research, 2013, 20: 1117–1123.

    Article  Google Scholar 

  32. CHAOUI A, MAZHOUDI S, GHORBAL M H, EL FERJANI E. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) [J]. Plant Science, 1997, 127: 139–147.

    Article  Google Scholar 

  33. CHEN Chia, JAFVERT C T. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water [J]. Environmental Science & Technology, 2010, 44: 6674–6679.

    Article  Google Scholar 

  34. KAGAN V E, TYURINA Y Y, TYURIN V A, KONDURU N V, POTAPOVICH A I, OSIPOV A N, KISIN E R, SCHWEGLER-BERRY D, MERCER R, CASTRANOVA V. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron [J]. Toxicology Letters, 2006, 165: 88–100.

    Article  Google Scholar 

  35. ZHANG Yong, ALI S F, DERVISHI E, XU Yang, LI Zhong, CASCIANO D, BIRIS A S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells [J]. Acs Nano, 2010, 4: 3181–3186.

    Article  Google Scholar 

  36. THURNHERR T, BRANDENBERGER C, FISCHER K, DIENER L, MANSER P, MAEDER-ALTHAUS X, KAISER J P, KRUG H F, ROTHEN-RUTISHAUSER, B, WICK P. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro [J]. Toxicology Letters, 2011, 200: 176–186.

    Article  Google Scholar 

  37. PORTER A E, GASS M, BENDALL J S, MULLER K, GOODE A, SKEPPER J N, MIDGLEY P A, WELLAND M. Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells [J]. Acs Nano, 2009, 3: 1485–1492.

    Article  Google Scholar 

  38. SANKAR R, PRASATH B B, NANDAKUMAR R, SANTHANAM P, SHIVASHANGARI K S, RAVIKUMAR V. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles [J]. Environmental Science and Pollution Research, 2014, 21: 14232–14240.

    Article  Google Scholar 

  39. KIM H S, PARK B H, KANG M S, YOON J S, JIN H J. Characterization of polycarbonate/multiwalled carbon nanotube composites [J]. Key Engineering Materials, 2006, 326–328: 1829–1832.

    Article  Google Scholar 

  40. TAN Xiao, LIN Chun, FUGETSU B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells [J]. Carbon, 2009, 47: 3479–3487.

    Article  Google Scholar 

  41. ZHANG Chao, YI Yang, HAO Kai, LIU Guang, WANG Gao. Algicidal activity of Salvia miltiorrhiza Bung on Microcystis aeruginosa—towards identification of algicidal substance and determination of inhibition mechanism [J]. Chemosphere, 2013, 93: 997–1004.

    Article  Google Scholar 

  42. SAISON C, PERREAULT F, DAIGLE J C, FORTIN C, CLAVERIE J, MORIN M, POPOVIC R. Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2010, 96: 109–114.

    Article  Google Scholar 

  43. ARUOJA V, DUBOURGUIER H C, KASEMETS K, KAHRU A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata [J]. Science of The Total Environment, 2009, 407: 1461–1468.

    Article  Google Scholar 

  44. NAGAO M, MINAMI A, ARAKAWA K, FUJIKAWA S, TAKEZAWA D. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens [J]. Journal of Plant Physiology, 2005, 162: 169–180.

    Article  Google Scholar 

  45. MIAO Ai, SCHWEHR K A, XU Chen, ZHANG Sai, LUO Zhi, QUIGG A, SANTSCHI P H. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances [J]. Environmental Pollution, 2009, 157: 3034–3041.

    Article  Google Scholar 

  46. ZHANG Sai, JIANG Yue, CHEN Chi, CREELEY D, SCHWEHR K A, QUIGG A, CHIN Wei, SANTSCHI P H. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots [J]. Aquatic Toxicology, 2013, 126: 214–223.

    Article  Google Scholar 

  47. LI Fang, LIU Wei, ZHAO Nan, DUAN Jing, WANG Zhi, ZHANG Yun, XIAO Xue, LIU Jing, YIN Gao, SHI Chao. Studies on extracting microcystin-LR from Microcystis aeruginosa by water bath [J]. Journal of Environmental Protection, 2013, 4: 70.

    Article  Google Scholar 

  48. CHANG Shu, LI Cheng, LIN Jiang, LI Yen, LEE Maw. Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets [J]. Chemosphere, 2014, 99: 49–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-jun Wang  (王应军).

Additional information

Foundation item: Project(035703011) supported by the Scientific Research Double Support Program of SICAU, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, Yj., Li, Yw. et al. Effects of single-walled carbon nanotubes on growth and physiological characteristics of Microcystis aeruginosa. J. Cent. South Univ. 25, 1628–1641 (2018). https://doi.org/10.1007/s11771-018-3855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3855-z

Key words

关键词

Navigation