Skip to main content
Log in

Estimation of half-wave potential of anabolic androgenic steroids by means of QSER approach

  • Materials, Metallurgy, Chemical and Environmental Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The quantitative structure-property relationship (QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential (E 1/2) using quantum and physico-chemical molecular descriptors. The descriptors were calculated by semi-empirical calculations. Models were established using partial least square (PLS) regression and back-propagation artificial neural network (BP-ANN). The QSPR results indicate that the descriptors of these derivatives have significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SCHWARZ J M, MCCARTHY M M. Steroid-induced sexual differentiation of the developing brain: Multiple pathways, one goal [J]. J Neurochem, 2008, 105(5): 1561–1572.

    Article  Google Scholar 

  2. ALVAREZ-GINARTE Y M, MARRERO-PONCE Y, RUIZGARCÍA J A, GARCIA-DE LA VEGA J M, NOHEDA-MARIN P, CRESPO-OTERO R, TORRENS-ZARAGOZA F, GARCÍADOMENECH R. Applying pattern recognition methods plus quantum and physico-chemical molecular descriptors to analyze the anabolic activity of structurally diverse steroids [J]. J Comput Chem, 2008, 29: 317–333.

    Article  Google Scholar 

  3. LYNCH G S, SCHERTZER J D, RYALL J G. Therapeutic approaches for muscle wasting disorders [J]. Pharmacol Ther, 2007, 113: 461–487.

    Article  Google Scholar 

  4. MAZZARINO M, CRISTINA BRAGANÒ M, DONATI F, de la TORRE X, BOTRÈ F. Effects of propyphenazone and other non-steroidal anti-inflammatory agents on the synthetic and endogenous androgenic anabolic steroids urinary excretion and/or instrumental detection [J]. Anal Chim Acta, 2010, 657: 60–68.

    Article  Google Scholar 

  5. BOSSOLA M, PACELLI F, TORTORELLI A, DOGLIETTO G B. Cancer cachexia: It’s time for more clinical trials [J]. Ann Surg Oncol, 2006, 14: 276–285

    Article  Google Scholar 

  6. O'HAGAN D, RZEPA H S. Some influences of fluorine in bioorganic chemistry [J]. Chem Commun, 1997, 7: 645–652.

    Article  Google Scholar 

  7. SHAMSIPUR M, SIROUEINEJAD A, HEMMATEENEJAD B, ABBASPOURB A, SHARGHI H, ALIZADEH K, ARSHADI S. Cyclic voltammetric, computational, and quantitative structureelectrochemistry relationship studies of the reduction of several 9,10-anthraquinone derivatives [J]. J Electroanal Chem, 2007, 600: 345–358.

    Article  Google Scholar 

  8. KRIVENKO A G, KOTKIN A S, KURMAZ V A. Thermodynamic and kinetic characteristics of intermediates of electrode reactions: Determination by direct and combined electrochemical methods. Russ [J]. J Electrochem, 2005, 41: 122–136.

    Google Scholar 

  9. HEMMATEENEJAD B, YAZDANI M. QSPR models for half-wave reduction potential of steroids: A comparative study between feature selection and feature extraction from subsets of or entire set of descriptors [J]. Anal Chim Acta, 2009, 634: 27–35.

    Article  Google Scholar 

  10. HEMMATEENEJAD B, SHAMSIPUR M. Quantitative structureelectrochemistry relationship study of some organic compounds using PC-ANN and PCR [J]. Internet Electron J Mol Des, 2004, 3: 316–334.

    Google Scholar 

  11. NESMERAK K, NEMEC I, STICHA M, WAISSER K, PALAT K. Quantitative structure-property relationships of new benzoxazines and their electrooxidation as a model of metabolic degradation [J]. Electrochim Acta, 2005, 50: 1431–1437.

    Article  Google Scholar 

  12. GARKANI-NEJAD Z, RASHIDI-NODEH H. Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones [J]. Electrochim Acta, 2010, 55: 2597–2605.

    Article  Google Scholar 

  13. CHENG Z J, ZHANG Y T, FU W Z. QSAR study of carboxylic acid derivatives as HIV-1 Integrase inhibitors [J]. Eur J Med Chem, 2010, 45: 3970–3980.

    Article  Google Scholar 

  14. DAI Yi-min, LIU Hui, LI Xun, ZHU Zhi-ping, ZHANG Yue-fei, CAO Zhong, ZHU Li-xuan, ZHOU Yue. An novel group contribution-based method for estimation of flash points of ester compounds [J]. Chemom Intell Lab Syst, 2014, 136: 138–146.

    Article  Google Scholar 

  15. DAI Yi-min, ZHU Zhi-ping, CAO Zhong, ZHANG Yue-fei, ZENG Ju-lan, LI Xun. Prediction of boiling points of organic compounds by QSPR tools [J]. J Mol Graph Model, 2013, 44: 113–119.

    Article  Google Scholar 

  16. DAI Yi-min, HUANG Ke-long, LI Xun, CAO Zhong, ZHU Zhi-ping, YANG Dao-wu. Simulation of 13C NMR chemical shifts of carbinol carbon atoms using quantitative structure-spectrum relationships [J]. Journal of Central South University of Technology, 2011, 18: 323–330.

    Article  Google Scholar 

  17. DEAN J A. Lang’s Handbook of chemistry [M]. New York: McGraw-Hill, Inc, 2005: 137–164.

    Google Scholar 

  18. ZUMAN Z. Substituent effects in organic polarography [M]. New York: Plenum Press, 1967: 128–130.

    Google Scholar 

  19. MAURI A, CONSONNI V, PAVAN M, TODESCHINI R. Dragon software: An easy approach to molecular descriptor calculations [J]. Match, 2006, 56(2): 237–248.

    MATH  Google Scholar 

  20. KATRITZKY A R, STOYANOVA-SLAVOVA I B, TAMM K, TAMN T, KARELSON M. Application of the QSPR Approach to the boiling points of Azeotropes [J]. The Journal of Physical Chemistry A, 2011, 115(15): 3475–3479.

    Article  Google Scholar 

  21. STEWART J J P. Optimization of parameters for semiempirical methods—II. Applications [J]. J Comput Chem, 1989, 10: 221–264.

    Article  Google Scholar 

  22. LUKOVITS I, SHABAN A, KÁLMÁN E. Thiosemicarbazides and thiosemicarbazones: Non-linear quantitative structure-efficiency model of corrosion inhibition [J]. Electrochim Acta, 2005, 50: 4128–4133.

    Article  Google Scholar 

  23. MARRERO P Y. Linear indices of the “molecular pseudograph’s atom adjacency matrix”: Definition, significance-interpretation and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors [J]. J Chem Inf Comput Sci, 2004, 44: 2010–2026.

    Article  Google Scholar 

  24. GARKANI-NEJAD Z, POSHTEH-SHIRANI M. Application of multivariate image analysis in QSPR study of 13C chemical shifts of naphthalene derivatives: A comparative study [J]. Talanta, 2010, 83: 225–232.

    Article  Google Scholar 

  25. ZHOU C Y, NIE C M, LI S, LI Z H. A novel semi-empirical topological descriptor Nt and application to study on QSPR/QSAR [J]. J Comput Chem, 2007, 28: 2413–2423.

    Article  Google Scholar 

  26. GUHA R, SERRA J R, JURS P C. Generation of QSAR sets with a self-organizing map [J]. J Mol Graph Model, 2004, 23: 1–14.

    Article  Google Scholar 

  27. WOLD S, RUHE A, WOLD H, DUNN W. The collinearity problem in linear regression, the partial least squares approach to generalized inverse SIAM [J]. J Sci Stat Comp, 1984, 5: 735–743.

    Article  MATH  Google Scholar 

  28. WOLD S. PLS for multivariate linear modeling [J]. Chemometric Methods in Molecular Design, 1995, 2: 195.

    Google Scholar 

  29. AJMANI S, AGRAWAL A, KULKARNI S A. A comprehensive structure-activity analysis of protein kinase B-alpha (Akt1) inhibitors [J]. J Mol Graph Model, 2010, 28: 683–694.

    Article  Google Scholar 

  30. GOODARZI M, DUCHOWICZ P R, WU C H, FERNANDEZ F M, CASTRO E A. New hybrid genetic based support vector regression as QSAR approach for analyzing flavonoids-GABA(A) complexes [J]. J Chem Inf Model, 2009, 49: 1475–1485.

    Article  Google Scholar 

  31. GOODARZI M, FREITAS M P, WU C H, DUCHOWICZ P R. pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression [J]. Chemom Intell Lab Sys, 2010, 101: 102–109.

    Article  Google Scholar 

  32. ROY P P, ROY K. On some aspects of variable selection for partial least squares regression models [J]. QSAR Comb Sci, 2008, 27: 302–313.

    Article  Google Scholar 

  33. ZHU M J, GE F, ZHU R L, WANG X Y, ZHENG X Y. A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris [J]. Chemosphere, 2010, 80: 46–52.

    Article  Google Scholar 

  34. ZHOU C Y, CHU X, NIE C M. Predicting thermodynamic properties with a novel semi-empirical topological descriptor and path numbers [J]. J Phys Chem B, 2007, 111: 10174–11079.

    Article  Google Scholar 

  35. CAO Chen-zhong. The substituent effect in organic chemistry [M]. Beijing: Science Press, 2003: 20–24. (in Chinese)

    Google Scholar 

  36. GOLMOHAMMADI H, SAFDARI M. Quantitative structure–property relationship prediction of gas-to-chlorofm partition coefficient using artificial neural network [J]. Microchim J, 2010, 95: 140–151.

    Article  Google Scholar 

  37. LIU G S, YU J G. QSAR analysis of soil sorption coefficients for polar organic chemicals: Substituted anilines and phenols [J]. Water Res, 2005, 39: 2048–2055.

    Article  Google Scholar 

  38. STOJKOVIC G, NOVIC M, KUZMANOVSKI I. Counterpropagation artificial neural networks as a tool for prediction of pKBH+ for series of amides [J]. Chemom Intell Lab Syst, 2010, 102: 123–129.

    Article  Google Scholar 

  39. WOLD S, SJÖSTRÖM M, ERIKSSON L. PLS-regression: A basic tool of chemometrics [J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109–130.

    Article  Google Scholar 

  40. GOLBRAIKH A, TROPSHA A. QSAR modeling using chirality descriptors derived from molecular topology [J]. J Comput Aided Mol Des, 2002, 16: 357–369.

    Article  Google Scholar 

  41. GOLBRAIKH A, TROPSHA A. Beware of q2! [J]. J Mol Graphic Model, 2002, 20: 269–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-min Dai  (戴益民).

Additional information

Foundation item: Project supported by the Postdoctoral Science Foundation of Central South University, China; Project(2015SK20823) supported by Science and Technology Project of Hunan Province, China; Project(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department, China; Project(CX2015B372) supported by Hunan Provincial Innovation Foundation for Postgraduate, China; Project supported by Innovation Experiment Program for University Students of Changsha University of Science and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Ym., Liu, H., Niu, Ll. et al. Estimation of half-wave potential of anabolic androgenic steroids by means of QSER approach. J. Cent. South Univ. 23, 1906–1914 (2016). https://doi.org/10.1007/s11771-016-3246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3246-2

Key words

Navigation