Skip to main content
Log in

Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013 and August 2014. We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential flow pathways attributed to fracture zones and fissures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J. P., and Ulrich, P., 2015, Monitoring landslide displacements with the Geocube wireless network of low-cost GPS: Engineering Geology, 195, 111–121.

    Article  Google Scholar 

  • Bièvre, G., Jongmans, D., Winiarski, T., and Zumbo, V., 2012, Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps): Hydrological Processes, 26(14), 2128–2142.

    Article  Google Scholar 

  • Binley, A., Cassiani, G., and Deiana, R., 2010, Hydrogeophysics: opportunities and challenges: Bollettino Di Geofisica Teorica Ed Applicata, 51(4), 267–284.

    Google Scholar 

  • Binley, A., Hubbard, S., Huisman, J., Revil, A., Robinson, D., Singha, K., and Slater, L. D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales: Water Resources Research, 51(6), 3837–3866.

    Article  Google Scholar 

  • Bruno, F., and Martillier, F., 2000, Test Of High-Resolution Seismic Reflection And Other Geophysical Techniques On The Boup Landslide In The Swiss Alps: Surveys in Geophysics, 21(4), 335–350.

    Article  Google Scholar 

  • Cassiani, G., Godio, A., Stocco, S., Villa, A., Deiana, R., Frattini, P., and Rossi, M., 2009, Monitoring the hydrologic behaviour of a mountain slope via timelapse electrical resistivity tomography: Near Surface Geophysics, 7(5–6), 475–486.

    Google Scholar 

  • Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham, M., Kuras, O., Merritt, A., and Wragg, J., 2014, 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment: Near Surface Geophysics, 12(1), 61–72.

    Google Scholar 

  • Chambers, J. E., Wilkinson, P. B., Kuras, O., Ford, J. R., Gunn, D. A., Meldrum, P. I., Pennington, C. V. L., Weller, A. L., Hobbs, P. R. N., and Ogilvy, R. D., 2011, Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK: Geomorphology, 125(4), 472–484.

    Article  Google Scholar 

  • Chu, R., Ni, S., Hu, X., Bao, F., Lu, P., and Li, Z., 2014, Joint Study of the Xishancun Landslide, Sichuan, Using Seismological and Electromagnetic Methods: AGU Fall Meeting Abstracts, 1, 08.

    Google Scholar 

  • Dahlin, T., and Zhou, B., 2004, A numerical comparison of 2D resistivity imaging with 10 electrode arrays: Geophysical Prospecting, 52(5), 379–398.

    Article  Google Scholar 

  • de Franco, R., et al., 2009, Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy): Journal of Applied Geophysics, 69(3–4), 117–130.

    Article  Google Scholar 

  • Gasperikova, E., Hubbard, S. S., Watson, D. B., Baker, G. S., Peterson, J. E., Kowalsky, M. B., Smith, M., and Brooks, S., 2012, Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior: Journal of Contaminant Hydrology, 142–143C(6), 33–49.

    Article  Google Scholar 

  • Gunther, T., Rucker, C., and Spitzer, K., 2006, Threedimensional modelling and inversion of dc resistivity data incorporating topography — II. Inversion: Geophysical Journal International, 166(2), 506–517.

    Article  Google Scholar 

  • Guo, X. J., Huang, X. Y., and Jia, Y. G., 2005, Forward modeling of different types of landslides with multielectrode electric method: Applied Geophysics, 2(1), 14–20.

    Article  Google Scholar 

  • Hayley, K., Bentley, L. R., and Gharibi, M., 2009, Timelapse electrical resistivity monitoring of salt-affected soil and groundwater: Water Resources Research, 45(7), 171–183.

    Article  Google Scholar 

  • Huang, R. Q., and Li, W. L., 2009, Analysis of the geohazards triggered by the 12 May 2008 Wenchuan Earthquake, China: Bulletin of Engineering Geology and the Environment, 68(3), 363–371.

    Article  Google Scholar 

  • Huang, R. Q., Zhao, J., Ju, N., Li, G., Lee, M. L., and Li, Y., 2013, Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China: Natural Hazards, 68(2), 1021–1039.

    Article  Google Scholar 

  • Hubner, R., Heller, K., Gunther, T., and Kleber, A., 2015, Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements: Hydrology and Earth System Sciences, 19(1), 225–240.

    Article  Google Scholar 

  • Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., and Elwaseif, M., 2012, Monitoring groundwatersurface water interaction using time-series and timefrequency analysis of transient three-dimensional electrical resistivity changes: Water Resources Research, 48(7), W07506.

    Article  Google Scholar 

  • Karaoulis, M., Tsourlos, P., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints: Near Surface Geophysics, 12(1), 25–34.

    Google Scholar 

  • Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations: Geophysical Journal International, 195(3), 1640–1656.

    Article  Google Scholar 

  • Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model: Journal of Applied Geophysics, 68(4), 522–532.

    Article  Google Scholar 

  • Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., and Wealthall, G. P., 2009, Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT): Comptes Rendus Geoscience, 341(10–11), 868–885.

    Article  Google Scholar 

  • LaBrecque, D. J., and Yang, X. J., 2001, Difference Inversion of ERT Data: a Fast Inversion Method for 3-D in Situ Monitoring: Journal of Environment and Engineering Geophysics, 6(2), 83–89.

    Article  Google Scholar 

  • Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., and Sdao, F., 2005, 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy: Geophysics, 70(3), B11–B18.

    Article  Google Scholar 

  • Lebourg, T., Binet, S., Tric, E., Jomard, H., and El Bedoui, S., 2005, Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide: Terra Nova, 17(5), 399–406.

    Article  Google Scholar 

  • Lebourg, T., Hernandez, M., Zerathe, S., El Bedoui, S., Jomard, H., and Fresia, B., 2010, Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach: Engineering Geology, 114(3–4), 238–250.

    Article  Google Scholar 

  • Lee, C. C., Zeng, L. S., Hsieh, C. H., Yu, C. Y., and Hsieh, S. H., 2012, Determination of mechanisms and hydrogeological environments of Gangxianlane landslides using geoelectrical and geological data in central Taiwan: Environmental Earth Sciences, 66(6), 1641–1651.

    Article  Google Scholar 

  • Li, S. C., Nie, L. C., Liu, B., Song, J., Liu, Z. Y., Su, M. X., and Xu, L., 2014, 3D electrical resistivity inversion using prior spatial shape constraints: Applied Geophysics, 10(4), 361–372.

    Article  Google Scholar 

  • Liu, C., Li, W., Wu, H., Lu, P., Sang, K., Sun, W., Chen, W., Hong, Y., and Li, R., 2013, Susceptibility evaluation and mapping of China’s landslides based on multi-source data: Natural Hazards, 69(3), 1477–1495.

    Article  Google Scholar 

  • Loke, M. H., 2014, RES2DINVx64 ver 4.03 Rapid 2-D Resistivity & IP inversion using the least-squares method: Software Manual.

    Google Scholar 

  • Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95(8), 135–156.

    Article  Google Scholar 

  • Loke, M. H., Dahlin, T., and Rucker, D. F., 2014, Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys: Near Surface Geophysics, 12(2007), 5–24.

    Article  Google Scholar 

  • Martorana, R., Lombardo, L., Messina, N., and Luzio, D., 2014, Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater: Near Surface Geophysics, 12(1), 45–59.

    Google Scholar 

  • Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization: Geophysics, 73(3), G7–G17.

    Article  Google Scholar 

  • Niesner, E., 2010, Subsurface resistivity changes and triggering influences detected by continuous geoelectric monitoring: The Leading Edge, 29(8), 952–955.

    Article  Google Scholar 

  • Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer: Geophysics, 72(4), F177–F187.

    Article  Google Scholar 

  • Oldenburg, D. W., and Li, Y. G., 1999, Estimating depth of investigation in dc resistivity and IP surveys: Geophysics, 64(2), 403–416.

    Article  Google Scholar 

  • Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., and Sdao, F., 2004, Highresolution electrical imaging of the Varco d’Izzo earthflow (southern Italy): Journal of Applied Geophysics, 56(1), 17–29.

    Article  Google Scholar 

  • Perrone, A., Lapenna, V., and Piscitelli, S., 2014, Electrical resistivity tomography technique for landslide investigation: A review: Earth-Science Reviews, 135(4), 65–82.

    Google Scholar 

  • Qi, S., Xu, Q., Lan, H., Zhang, B., and Liu, J., 2010, Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake, China: Engineering Geology, 116(1), 95–108.

    Article  Google Scholar 

  • Revil, A., Skold, M., Karaoulis, M., Schmutz, M., Hubbard, S. S., Mehlhorn, T. L., and Watson, D. B., 2013, Hydrogeophysical investigations of the former S-3 ponds contaminant plumes, Oak Ridge Integrated Field Research Challenge site, Tennessee: Geophysics, 78(4), En29–En41.

    Article  Google Scholar 

  • Rucker, C., Gunther, T., and Spitzer, K., 2006, Threedimensional modelling and inversion of dc resistivity data incorporating topography — I. Modelling: Geophysical Journal International, 166(2), 495–505.

    Article  Google Scholar 

  • Shan, C., Bastani, M., Malehmir, A., Persson, L., and Engdahl, M., 2014, Integrated 2d modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden: Geophysics, 79(4), EN61–EN75.

    Article  Google Scholar 

  • Su, L. J., Xu, X. Q., Liao, H. J., and Geng, X. Y., 2015, Shear wave velocity analysis of a deep seated gravel landslide structure using the microtremor survey method: Proceedings of the International Symposium on Geohazards and Geomechanics (ISGG), Warwick, ENGLAND, 012026.

    Google Scholar 

  • Supper, R., Römer, A., Jochum, B., Bieber, G., and Jaritz, W., 2008, A complex geo-scientific strategy for landslide hazard mitigation – from airborne mapping to ground monitoring: Adv. Geosci., 14(14), 195–200.

    Article  Google Scholar 

  • Thomsen, R., Sondergaard, V. H., and Sorensen, K. I., 2004, Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark: Hydrogeology Journal, 12(5), 550–562.

    Article  Google Scholar 

  • Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., and Ponton, J., 2012, Hydrological response of weathered clay-shale slopes: water infiltration monitoring with timelapse electrical resistivity tomography: Hydrological Processes, 26(14), 2106–2119.

    Article  Google Scholar 

  • Wilkinson, P. B., Chambers, J. E., Meldrum, P. I., Gunn, D. A., Ogilvy, R. D., and Kuras, O., 2010, Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only: Geophysical Journal International, 183(2), 543–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yun Hu.

Additional information

This study was funded by the National Basic Research Program of China (973 Program) (No. 2013CB733203) and the National Natural Science Foundation of China (No. 41474055).

Xu Dong is a Ph.D. student at the Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan). He received his B.S. from East China University of Technology in 2013. His research interests are electrical resistivity tomography and hydrogeophysics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Hu, XY., Shan, CL. et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography. Appl. Geophys. 13, 1–12 (2016). https://doi.org/10.1007/s11770-016-0543-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-016-0543-3

Keywords

Navigation