Skip to main content
Log in

Bibliometrics-based Research Hotspots and Development Trends in Eco-hydrology of Dammed Rivers

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Water conservation initiatives satisfy the demand for water supply, electricity generation, irrigation, and flood control. While helping humanity, they have also altered the ecosystem of natural rivers, impacted river ecology, disrupted river continuity, and jeopardized the existence of aquatic creatures in rivers. Studying the impacts of dam construction on rivers can enhance our knowledge of river ecological and environmental concerns and help sustain the health of river ecosystems, thereby realizing the harmony between humans and water in both theoretical and practical aspects. This study used bibliometrics and constructed an author-keyword 2-mode matrix network using Co-Occurrence software to identify the hotspots and research trend in eco-hydrology of dammed rivers. We identified ‘FLOW’ ‘SEDIMENT’ ‘QUALITY’ and ‘MODEL’ as the research hotspots in the ecological impact of dammed rivers, and combined the related literatures, we highlight the research progress in the four directions. Then the research shortcomings and prospect were discussed, including strengthening the monitoring and analysis of critical ecological variables, enhancing the hydrological monitoring density for small rivers, strengthening the research of relationship between eutrophication and zooplankton, establishing multiscale approaches, and combining multi-sources information technologies to improve parameter accuracy in the model research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbarzadeh Z, Maavara T, Slowinski S et al., 2019. Effects of damming on river nitrogen fluxes: a global analysis. Global Biogeochemical Cycles, 33(11): 1339–1357. doi: https://doi.org/10.1229/2019gb006222

    Article  Google Scholar 

  • Band L E, Tague C L, Groffman P et al., 2001. Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrological Processes, 15(10): 2013–2028. doi: https://doi.org/10.1002/hyp.253

    Article  Google Scholar 

  • Bejarano M D, Sordo-Ward Á, Alonso C et al., 2017. Characterizing effects of hydropower plants on sub-daily flow regimes. Journal of Hydrology, 550: 186–200. doi: https://doi.org/10.1016/j.jhydrol.2017.04.023

    Article  Google Scholar 

  • Castello L, Macedo M N, 2016. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology, 22(3): 990–1007. doi: https://doi.org/10.1111/gcb.13173

    Article  Google Scholar 

  • Chen Xi, Chen Xi, Cheng Qinbo et al., 2018. Multi-objective optimization of an improved Xin’anjiang model: a case study in Linhuanji catchment. South-to-North Water Transfers and Water Science and Technology, 16(1): 35–41, 56. (in Chinese)

    Google Scholar 

  • Chen Xiaohong, Zhong Ruida, 2020. Hydropower generation and ecological operation under climate change: a case study of the downstream cascade of Lancang River hydropower plants. Advances in Water Science, 31(5): 754–764. (in Chinese)

    Google Scholar 

  • Chen Y D, Yang T, Xu C Y et al., 2010. Hydrologic alteration along the Middle and Upper East River (Dongjiang) Basin, South China: a visually enhanced mining on the results of RVA method. Stochastic Environmental Research and Risk Assessment, 24(1): 9–18. doi: https://doi.org/10.1007/s00477-008-0294-7

    Article  Google Scholar 

  • Costigan K H, Daniels M D, 2012. Damming the prairie: human alteration of Great Plains river regimes. Journal of Hydrology, 444–445: 90–99. doi: https://doi.org/10.1016/j.jhydrol.2012.04.008

    Article  Google Scholar 

  • da Silva C A, Train S, Rodrigues L C, 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia, 537(1–3): 99–109. doi: https://doi.org/10.1007/s10750-004-2552-0

    Article  Google Scholar 

  • Deng X J, Xu Y P, Han L F et al., 2018. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. Journal of Hydrology, 566: 846–859. doi: https://doi.org/10.1016/j.jhydrol.2018.09.060

    Article  Google Scholar 

  • Fan H, He D M, Wang H L, 2015. Environmental consequences of damming the mainstream Lancang-Mekong River: a review. Earth-Science Reviews, 146: 77–91. doi: https://doi.org/10.1016/j.earscirev.2015.03.007

    Article  Google Scholar 

  • Forsberg B R, Melack J M, Dunne T et al., 2017. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 12(8): e0182254. doi: https://doi.org/10.1371/journal.pone.0182254

    Article  Google Scholar 

  • Gao Chao, Jin Gaojie, 2012. Effects of DEM resolution on results of the SWIM hydrological model in the Changtaiguan Basin. Geographical Research, 31(3): 399–408. (in Chinese)

    Google Scholar 

  • Gao Jianxiong, Cheng Yi, Geng Zhe, 2022. Evolution, hot spot and trend: research on the integration of sports and education—CNKI document metrology visualization based on COOC/VOSviewer. Sichuan Sports Science, 41(6): 127–133. (in Chinese)

    Google Scholar 

  • Giosan L, Syvitski J, Constantinescu S et al., 2014. Climate change: protect the world’s deltas. Nature, 516(7529): 31–33. doi: https://doi.org/10.1038/516031a

    Article  Google Scholar 

  • Govind A, Chen J M, Margolis H et al., 2009. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): model description and test in a boreal ecosystem in Eastern North America.. Journal of Hydrology, 367(3–4): 200–216. doi: https://doi.org/10.1016/j.jhydrol.2009.01.006

    Article  Google Scholar 

  • Grill G, Lehner B, Lumsdon A E et al., 2015. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 10(1): 015001. doi: https://doi.org/10.1088/1748-9326/10/1/015001

    Article  Google Scholar 

  • Group of Three Gorges Project Sediment Expert, 2010. Summary of Field Data for Sedimentation in the Three Gorges Project during the Initial Filling Period. Beijing: Science and Technology Press of China. (in Chinese)

    Google Scholar 

  • Guo C, Jin Z W, Guo L C et al., 2020. On the cumulative dam impact in the upper Changjiang River: streamflow and sediment load changes. Catena, 184: 104250. doi: https://doi.org/10.1016/j.catena.2019.104250

    Article  Google Scholar 

  • Guo Wenxian, Wang Hongxiang, Xia Ziqiang et al., 2009. Effects of Three Gorges and Gezhouba reservoirs on river water temperature regimes. Journal of Hydroelectric Engineering, 28(6): 182–187. (in Chinese)

    Google Scholar 

  • Guy P, Marie-Claude T, Mriou J et al., 2015. Synthesizing information systems knowledge: a typology of literature reviews. Information and Management, 52: 183–199. doi: https://doi.org/10.1016/j.im.2014.08.008

    Article  Google Scholar 

  • Hamman J J, Nijssen B, Bohn T J et al., 2018. The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility. Geoscientific Model Development, 11(8): 3481–3496. doi: https://doi.org/10.5194/gmd-11-3481-2018

    Article  Google Scholar 

  • Hylander L D, Grohn J, Tropp M et al., 2006. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil. Journal of Environmental Management, 81(2): 155–166. doi: https://doi.org/10.1016/j.jenvman.2005.09.025

    Article  Google Scholar 

  • Ivanov V Y, Bras R L, Vivoni E R, 2008. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 2. energy-water controls of vegetation spatiotemporal dynamics and topographic niches of favorability. Water Resources Research, 44(3): W03430. doi: https://doi.org/10.1029/2006wr005595

    Google Scholar 

  • Janauer G A, 2000. Ecohydrology: fusing concepts and scales. Ecological Engineering, 16(1): 9–16. doi: https://doi.org/10.1016/s0925-8574(00)00072-0

    Article  Google Scholar 

  • Jia Haifeng, Cheng Shengtong, Ding Jianhua et al., 2001. Relationship between eutrophication control and reservoir operation. Environmental Science, 22(4): 104–107. (in Chinese)

    Google Scholar 

  • Kemenes A, Forsberg B R, Melack J M, 2011. CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research: Biogeosciences, 116(G3): G03004. doi: https://doi.org/10.1029/2010jg001465

    Article  Google Scholar 

  • Kibler K M, Alipour M, 2017. Flow alteration signatures of diversion hydropower: an analysis of 32 rivers in southwestern China. Ecohydrology, 10(5): e1846. doi: https://doi.org/10.1002/eco.1846

    Article  Google Scholar 

  • Kuemmerlen M, Reichert P, Siber R et al., 2019. Ecological assessment of river networks: from reach to catchment scale. Science of the Total Environment, 650: 1613–1627. doi: https://doi.org/10.1016/j.scitotenv.2018.09.019

    Article  Google Scholar 

  • Kunz M J, Anselmetti F S, Wüest A et al., 2011. Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). Journal of Geophysical Research: Biogeosciences, 116(G3): G03003. doi: https://doi.org/10.1029/2010jg001538

    Article  Google Scholar 

  • Li Chong, Peng Jing, Liao Wengen, 2006. Study on the eco-hydrological factors and flow regime requirement on spawning of four major Chinese carps in the middle reaches of Yangtze River. Journal of China Institute of Water Resources Hydropower Research, 4(3): 170–176. (in Chinese)

    Google Scholar 

  • Luo Peng, Song Xingyuan, 2011. A raster-based distributed hydrological model using SCS model. Engineering Journal of Wuhan University, 44(2): 156–160. (in Chinese)

    Google Scholar 

  • Maavara T, Parsons C T, Ridenour C et al., 2015. Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences of the United States of America, 112(51): 15603–15608. doi: https://doi.org/10.1073/pnas.1511797112

    Article  Google Scholar 

  • Maftei C, Chevallier P, Carluer N et al., 2019. Application of the TOPOG model on a flash-flood-prone hill catchment in Romania. Journal of Environment Protection and Ecology, 20(1): 123–134.

    Google Scholar 

  • Magadza C H D, 2010. Environmental state of Lake Kariba and Zambezi River Valley: lessons learned and not learned. Lakes and Reservoirs: Science, Policy and Management for Sustainable Use, 15(3): 167–192. doi: https://doi.org/10.1111/j.1440-1770.2010.00438.x

    Article  Google Scholar 

  • Maheu A, St-Hilaire A, Caissie D et al., 2016. Understanding the thermal regime of rivers influenced by small and medium size dams in eastern Canada. River Research and Applications, 32(10): 2032–2044. doi: https://doi.org/10.1002/rra.3046

    Article  Google Scholar 

  • Mao Zhanpo, Peng Wenqi, Zhou Huaidong, 2004. Ecological effects of dams to rivers and countermeasure study. China Water Resources, (15): 43–45. (in Chinese)

  • Mo X G, Liu S X, Lin Z H et al., 2004. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 285(1–4): 125–142. doi: https://doi.org/10.1016/j.jhydrol.2003.08.013

    Article  Google Scholar 

  • Morris G L, Fan J, 1998. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use. New York: McGraw-Hill Professional.

    Google Scholar 

  • Nixon S W, 2003. Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? AMBIO, 32(1): 30–39. doi: https://doi.org/10.1579/0044-7447-32.1.30

    Article  Google Scholar 

  • Pan S L, Liu L, Bai Z X et al., 2018. Integration of remote sensing evapotranspiration into multi-objective calibration of distributed hydrology-soil-vegetation model (DHSVM) in a humid region of China. Water, 10(12): 1841–1858. doi: https://doi.org/10.3390/w10121841

    Article  Google Scholar 

  • Poff N L, Ward J V, 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management, 14(5): 629–645. doi: https://doi.org/10.1007/bf02394714

    Article  Google Scholar 

  • Quan Junping, 2023. Knowledge graph analysis on AI education research in China based on COOC and VOSviewer. Modern Information Technology, 7(12): 141–146. (in Chinese)

    Google Scholar 

  • Rei I, Kazuaki O, Tatsuro S et al., 2019. Effects of sediment released from a check dam on sediment deposits and fish and macroinvertebrate communities in a small stream. Water, 11(4): 716–731. doi: https://doi.org/10.3390/w11040716

    Article  Google Scholar 

  • Tague C L, Band L E, 2004. RHESSys: regional hydro-ecologic simulation system—an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interactions, 8(19): 1–12. doi: https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2

    Article  Google Scholar 

  • Vörösmarty C J, Meybeck M, Fekete B et al., 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39(1–2): 169–190. doi: https://doi.org/10.1016/s0921-8181(03)00023-7

    Article  Google Scholar 

  • Walling D E, 2012. The role of dams in the global sediment budget. In: Proceedings of a Symposium Held at the Institute of Mountain Hazards and Environment. Chengdu, China: IAHS Press, 3–11.

    Google Scholar 

  • Wang Dongliang, Yang Youqing, Han Bing, 2023. Visual analysis of user portrait research hotspots based on COOC. Journal of Changzhou College of Information Technology, 22(4): 83–88. (in Chinese)

    Google Scholar 

  • Wang Lingling, 2020. Research on Magazine Openness based on Text Mining and Complex Network. Nanchang: Jiangxi University of Finance and Economics. (in Chinese)

    Google Scholar 

  • Wang Shengping, Zhang Zhiqiang, Sun Ge et al., 2012. Assessing hydrological impacts of changes in land use and precipitation in Chaohe watershed using MIKESHE model. Journal of Ecology and Rural Environment, 28(3): 320–325. (in Chinese)

    Google Scholar 

  • Wera F A, Ling T Y, Nyanti L et al., 2019. Effects of opened and closed spillway operations of a large tropical hydroelectric dam on the water quality of the Downstream River. Journal of Chemistry, 2019: 6567107. doi: https://doi.org/10.1155/2019/6567107

    Article  Google Scholar 

  • White K D, Moore J N, 2002. Impacts of dam removal on riverine ice regime.. Journal of Cole Regions Engineering, 16(1): 2–16. doi: https://doi.org/10.1061/(ASCE)0887-381X(2002)16:1(2)

    Article  Google Scholar 

  • Winton R S, Calamita E, Wehrli B, 2019. Reviews and syntheses: dams, water quality and tropical reservoir stratification. Biogeosciences, 16(8): 1657–1671. doi: https://doi.org/10.5194/bg-16-1657-2019

    Article  Google Scholar 

  • Yang D Q, Ye B S, Kane D L, 2004. Streamflow changes over Siberian Yenisei River Basin. Journal of Hydrology, 296(1–4): 59–80. doi: https://doi.org/10.1016/j.jhydrol.2004.03.017

    Article  Google Scholar 

  • Yang S L, Li M, Dai S B et al., 2006. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters, 33(6): L06408. doi: https://doi.org/10.1029/2005GL025507

    Article  Google Scholar 

  • Yang S L, Zhang J, Ju J et al., 2005. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. Journal of Geophysic Search-Earth Surface, 110(F3): 1–12. doi: https://doi.org/10.1029/2004JF000271

    Google Scholar 

  • Yang S T, Dong G T, Zheng D H et al., 2011. Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China. Ecological Modelling, 222(20–22): 3701–3717. doi: https://doi.org/10.1016/j.ecolmodel.2011.09.004

    Article  Google Scholar 

  • Yang T, Zhang Q, Chen Y D et al., 2008. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrological Processes, 22(18): 3829–3843. doi: https://doi.org/10.1002/hyp.6993

    Article  Google Scholar 

  • Yang Zhengjian, Liu Defu, Ji Daobin et al., 2010. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Science China Technological Sciences, 53(4): 1114–1125. doi: https://doi.org/10.1007/s11431-009-0387-7

    Article  Google Scholar 

  • Yesuf H M, Assen M, Alamirew T et al., 2015. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena, 127(2): 191–205. doi: https://doi.org/10.1016/j.catena.2014.12.032

    Article  Google Scholar 

  • Zhang Ling, 2015. Research on Hydro-Ecological Effect of Damming Rivers in Mid-Lower Yangtze. Zhengzhou: North China University of Water Resources and Electric Power. (in Chinese)

    Google Scholar 

  • Zhao Q H, Liu S L, Deng L et al., 2012. Landscape change and hydrologic alteration associated with dam construction. International Journal of Applied Earth Observation and Geoinformation, 16: 17–26. doi: https://doi.org/10.1016/j.jag.2011.11.009

    Article  Google Scholar 

  • Ziv G, Baran E, Nam S et al., 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences of the United States of America, 109(15): 5609–5614. doi: https://doi.org/10.1073/pnas.1201423109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Yingyi: writing-original draft, investigation, methodology, software, visualization. FENG Mingming: validation and visualization. SHI Guoqiang: resources and data curation. JIANG Mengyu: writing-review & editing, supervision. JIANG Ming: conceptualization, funding acquisition, supervision.

Corresponding author

Correspondence to Ming Jiang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Under the auspices of National Key R&D Program of China (No. 2019YFC0409104)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Feng, M., Shi, G. et al. Bibliometrics-based Research Hotspots and Development Trends in Eco-hydrology of Dammed Rivers. Chin. Geogr. Sci. 33, 1153–1164 (2023). https://doi.org/10.1007/s11769-023-1395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-023-1395-4

Keywords

Navigation