Skip to main content
Log in

Regional gradient observability for semilinear hyperbolic systems: HUM approach

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

The paper aims to extend the notion of regional observability of the gradient to the semilinear hyperbolic case, in order to reconstruct the gradient of the initial conditions in a subregion ω of the domain evolutionΩ. We start with an asymptotically linear system, the approach is based on an extension of the Hilbert uniqueness method (HUM) and Schauder’s fixed point theorem. The analysis leads to an algorithm which is successfully numerically implemented and illustrated with examples and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Henry. Geometric Theory of Semilinear Parabolic Systems. Berlin: Springer, 1981.

    Book  MATH  Google Scholar 

  2. I. El Harraki, A. Boutoulout. Gradient controllability for hyperbolic systems. Information Sciences Letters–An International Journal, 2014, 3(1): 11–19.

    Google Scholar 

  3. I. Lasiecka, R. Triggiani. Exact controllability of semilinear abstract systems with applications to waves and plates boundary control problems. Applied Mathematics and Optimization, 1991, 23(2): 109–154.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Zhou. Approximate controllability for a class of semilinear abstract equations. SIAM Journal on Control and Optimization, 1983, 21(4): 551–555.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Zuazua. Exact controllability for the semilinear wave equations. Journal de Mathématiques Pures et Appliqueés, 1990, 59(1): 1–31.

    MathSciNet  MATH  Google Scholar 

  6. I. El Harraki, A. Boutoulout. A notes on the boundary gradient controllability for hyperbolic systems: approaches and simulations. International Review of Automatic Control, 2015, 8(3): 170–179.

    Article  Google Scholar 

  7. E. Zerrik, R. Larhrissi, H. Bourray. An output controllability problem for semilinear distributed hyperbolic systems. International Journal of Applied Mathematics Computer Science, 2007, 17(4): 437–448.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Ramdani, M. Tucsnak, G. Weiss. Recovering the initial state of an infinite-dimensional system using observers. Automatica, 2010, 46(10): 1616–1625.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Boutoulout, H. Bourray, F. Z. El Alaoui. Regional gradient observability for distributed semilinear parabolic systems. Journal of Dynamical and Control Systems, 2012, 18(2): 159–179.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Boutoulout, H. Bourray, A. Khazari. Gradient observability for hyperbolic system. International Review of Automatic Control, 2013, 6: 247–263.

    Article  Google Scholar 

  11. E. Zeidler. Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. New York: Springer, 1990.

    Book  MATH  Google Scholar 

  12. R. C. Baker, B. Charlie. Nonlinear unstable systems. International Journal of Control, 1989, 23(4): 123–145.

    Google Scholar 

  13. W. Liu. Exact distributed controllability for the semilinear wave equation. Portugaliae Mathematica, 2000, 57(4): 494–508.

    MathSciNet  Google Scholar 

  14. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer, 1990.

    MATH  Google Scholar 

  15. J. L. Lions. Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Paris: Masson, 1988.

    MATH  Google Scholar 

  16. J. L. Lions, E. Magenes. Problèmes Aux Limites Non HomogE`Nes et Applications. Paris: Dunod, 1968.

    MATH  Google Scholar 

  17. A. Khazari, A. Boutoulout. Gradient observability for semilinear hyperbolic systems: sectorial approach. Intelligent Control and Automation, 2014, 5(3): 170–181.

    Article  Google Scholar 

  18. A. Khazari, A. Boutoulout. Flux reconstruction for hyperbolic systems: sensors and simulations. Evolution Equations and Control Theory, 2015, 4(2): 177–192.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Boutoulout.

Additional information

This work was supported by Academy Hassan II.

Adil KHAZARI is a professor at the University Sidi Mohamed Ben Abdellah, ´ Ecole Nationale de Commerce et de gestion, Fez -Morocco. He obtained his Ph.D. degree in System Regional Analysis, in 2015 at University Moulay Ismail. E-mail: adil.khazari@usmba.ac.ma.

Ali BOUTOULOUT is a professor at the University Moulay Ismail of Meknes in Morocco. He obtained his Ph.D. degree in System Regional Analysis, in 2000, at University Moulay Ismail. Professor Boutoulout has published many paper in the area of system analysis and control. Currently, he is the head of the research team STI (System Theory and Informatics) and a director of Master System Theory and Informatics, in Department of Mathematics and Informatics of Faculty of Sciences at the University Moulay Ismail, of Meknes in Morocco. E-mail: boutouloutali@yahoo.fr.

Imad EL HARRAKI is a professor at ´ Ecole nationale sup´ erieure des mines, Rabat. He obtained his Ph.D. degree in System Regional Analysis, in 2016, at University Moulay Ismail. E-mail: elharraki@enim.ac.ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazari, A., Boutoulout, A. & El Harraki, I. Regional gradient observability for semilinear hyperbolic systems: HUM approach. Control Theory Technol. 16, 72–80 (2018). https://doi.org/10.1007/s11768-018-6122-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-018-6122-9

Keywords

Navigation